Abstract:
A consumer product including a personal care composition providing multiple blooms of fragrance, the multiple blooms being provided for by different populations of microcapsules.
Abstract:
A preparation method of the microcapsules for low-temperature well cementation to be used to control cement hydration heat includes: (S1) a shell material, and added into deionized water, then the resultant mixture being stirred in a thermostat water bath so as to completely dissolve it into a homogeneous and stable shell material solution; (S2) a core material and an emulsifier being put into a three-necked flask and stirred in a thermostat water bath so as to uniformly emulsify and disperse them, forming a stable oil-in-water core material emulsion, while adjusting the pH value of the emulsion with a pH adjuster; (S3) the three-necked flask containing the core material emulsion being transferred to a water bath, and then the shell material solution being dropwise added into it with stirring, after reacting, a solid-liquid mixture being poured out so as to naturally cool it to room temperature.
Abstract:
A composite shell particle including a composite shell layer is provided. The composite shell layer is a hollow shell, wherein the composite shell layer includes a porous biological layer and a metallic layer. The porous biological layer is composed of an organic substance including a cell wall or a cell membrane of a bacteria or algae. The metallic layer is crosslinked with the porous biological layer to form the composite shell layer. The metallic layer includes at least one metal selected from the group consisting of iron, molybdenum, tungsten, manganese, zirconium, cobalt, nickel, copper, zinc, and calcium, and/or includes at least one selected form the group consisting of metal chelates, metal oxides, metal sulfides, metal chlorides, metal selenides, metal acid salt compounds, and metal carbonate compounds. A method of manufacturing the composite shell particle, and a biological material including the composite shell particle and the applications thereof are also provided.
Abstract:
The disclosure relates to a composition comprising amphiphilic Janus particles and a waterborne binder, wherein the particles are self-stratified, and methods of making and using the same. The disclosure also relates to the synthesis of amphiphilic Janus particles.
Abstract:
The present invention generally relates to the field of pharmaceutical sciences. More specifically, the present invention includes apparatus and devices for the preparation of pharmaceutical formulations containing large diameter synthetic membrane vesicles, such as multivesicular liposomes, methods for preparing such formulations, and the use of specific formulations for therapeutic treatment of subjects in need thereof. Formation and use of the pharmaceutical formulations containing large diameter synthetic membrane vesicles produced by using the apparatus and devices for therapeutic treatment of subjects in need thereof is also contemplated.
Abstract:
Disclosed is an electrostatic spray drying process for encapsulating a core material, such as a volatile flavor oil, within a carrier or wall material. The process is achieved by atomizing a liquid emulsion comprising the core material and the wall material, applying an electrostatic charge at the site of atomization, and drying the atomized emulsion into an encapsulated, free-flowing powder. Applying an electrostatic charge at the site of atomization allows the spray drying to be accomplished at significantly reduced temperatures, in particular, inlet temperatures in the range of 25° C. to 110° C., and outlet temperatures in the range of 25° C. to 80° C. The low drying temperatures impart improvements in the resulting encapsulated powdered product, including better retention of volatile flavor components, a flavor profile comparable to that of the starting liquid formulation, and better hydration and dissolution in water-based applications.
Abstract:
The present invention generally relates to the field of pharmaceutical sciences. More specifically, the present invention includes apparatus and devices for the preparation of pharmaceutical formulations containing large diameter synthetic membrane vesicles, such as multivesicular liposomes, methods for preparing such formulations, and the use of specific formulations for therapeutic treatment of subjects in need thereof. Formation and use of the pharmaceutical formulations containing large diameter synthetic membrane vesicles produced by using the apparatus and devices for therapeutic treatment of subjects in need thereof is also contemplated.
Abstract:
The present invention generally relates to the field of pharmaceutical sciences. More specifically, the present invention includes apparatus and devices for the preparation of pharmaceutical formulations containing large diameter synthetic membrane vesicles, such as multivesicular liposomes, methods for preparing such formulations, and the use of specific formulations for therapeutic treatment of subjects in need thereof. Formation and use of the pharmaceutical formulations containing large diameter synthetic membrane vesicles produced by using the apparatus and devices for therapeutic treatment of subjects in need thereof is also contemplated.
Abstract:
The present invention relates to a method for encapsulation of an edible oil using whey protein and a reducing sugar. The edible oil comprises long chain polyunsaturated fatty acids. Also compositions comprising an edible oil obtainable by the method of the invention are provided. The compositions of the invention have good stability to oxidation, good taste and/or odor, and limited diffusion from and into the continuous phase when applied in liquids. The compositions of the invention are particularly suitable for food and pharma applications.
Abstract:
A method of making a consumer product providing multiple blooms of fragrance, the multiple blooms being provided for by different populations of microcapsules.