Abstract:
An integrated chassis control system for a vehicle having at least one vehicle subsystem is provided, which includes; at least one sensor for sensing at least one vehicle parameter, at least one vehicle control system for adjusting the at least one vehicle subsystem, a driving mode switch for selecting at least one driving mode, and a controller responsive to the at least one sensor and the driving mode switch. The controller is adapted for controlling the at least one vehicle control system in accordance with the at least one driving mode.
Abstract:
A vehicle dynamics control system for a motor vehicle having an active normal force adjustment system with which the normal force acting on a wheel may be adjusted is described. For coordinating the vehicle dynamics control system with the active normal force adjustment system, information about a change in the normal force is to be supplied to a control unit of the vehicle dynamics control system and may be taken into account in the vehicle dynamic control.
Abstract:
A vehicle control system (10) including a vehicle motion control subsystem (12) that has an input receiving an intended driving demand (14) and a plurality of coordinator subsystems (16) for coordinating actuators of the vehicle. The vehicle motion control subsystem (12) communicates with the coordinator subsystems (16) to determine whether a single coordinator subsystem (16) can carry out the intended driving demand (14). The vehicle motion control subsystem (12) will distribute demand signals among one or more of the coordinator subsystems (16) to allow the vehicle to implement the intended driving demand (14).
Abstract:
A yaw stability control system (18) is enhanced to include roll stability control function for an automotive vehicle and includes a plurality of sensors (28-39) sensing the dynamic conditions of the vehicle. The sensors may include a speed sensor (20), a lateral acceleration sensor (32), a yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) is coupled to the speed sensor (20), the lateral acceleration sensor (32), the yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) generates both a yaw stability feedback control signal and a roll stability feedback control signal. The priority of achieving yaw stability control or roll stability control is determined through priority determination logic. If a potential rollover event is detected, the roll stability control will take the priority. The controller for roll stability control function determines a roll angle of the vehicle from the lateral acceleration sensor signal and calculates the feedback control signal based on the roll angle.
Abstract:
An active actuator is interposed between the unsprung mass and the sprung mass of a vehicle, and a controller selectively extends and retracts the actuator at a prescribed acceleration so as to selectively apply an additional contact load to the wheel by making use of the inertial force of the sprung mass and/or the unsprung mass of the vehicle. A particularly advantageous result can be achieved by increasing the tire contact load when the wheel is about to lock up when braking. The present invention can thus reduce the braking distance for the given road condition.
Abstract:
A vehicle crane having a hydropneumatic suspension and a braking system including wheel brakes and a first braking circuit assigned to the wheel brakes of at least one vehicle axle and a second braking circuit assigned to the wheel brakes of at least one other vehicle axle. In order to adapt the actuation of the braking system to the weight state, the hydropneumatic suspension is coupled to an automatically load-dependent braking force regulator that is operatively connected to one of the braking circuits or to one of their braking circuit sections such that, on the basis of a weight state signal of the vehicle crane generated from the hydropneumatic suspension, a braking pressure generated inside the braking circuit or braking circuit section coupled to the automatically load-dependent braking force regulator, can be varied with respect to a braking pressure generated simultaneously inside the other braking circuit or braking circuit section.
Abstract:
A speed control system operable to control a motor vehicle to operate in accordance with a set-speed value, the control means being operable to allow a user to adjust the set-speed value by user actuation of a vehicle brake control or a vehicle accelerator control.
Abstract:
A hitch assist system is provided herein. An imaging device captures images of a scene rearward of a vehicle. A controller processes captured images and is configured to control a vehicle suspension system to adjust a height of the vehicle and control the deployment of a power tongue jack of a trailer.
Abstract:
A method for operating a speed control system of a vehicle is provided. The method comprises detecting an external force acting on the vehicle wherein the external force has an accelerating or decelerating effect on the vehicle. The method further comprises automatically adjusting a rate of change of at least one component of a net torque being applied to one or more wheels of the vehicle to compensate for the accelerating or decelerating effect of the external force on the vehicle. A system for controlling the speed of a vehicle comprising an electronic control unit configured to perform the above-described methodology is also provided.
Abstract:
A vehicle controlling apparatus includes: a vertical acceleration sensor configured to detect a vertical acceleration of a sprung mass; a power-source attitude controller configured to compute a power-source attitude control amount for a driving force outputted from a power source, the control amount making the acceleration detected by the vertical acceleration sensor an appropriate acceleration for attaining a target sprung-mass state, and to control the power source based on the power-source attitude control amount; a stroke sensor configured to detect a stroke speed of a shock absorber; and a friction-brake attitude controller configured to compute a brake attitude control amount for a braking force outputted from a friction brake, the control amount making the stroke speed detected by the stroke sensor an appropriate stroke speed for attaining a target sprung-mass state, and to control the friction brake based on the brake attitude control amount.