Abstract:
Disclosed is an exemplary method for optimizing vehicle performance. The method includes determining an optimized drive torque for maximizing vehicle fuel economy and detecting a driver requested drive torque. A determination is made on whether the driver requested drive torque is performance related or safety related. The arbitrated drive torque is set to the optimized drive torque when it is determined that the driver requested drive torque is not performance and safety related. The arbitrated drive torque is set to the driver requested drive torque when it is determined that the driver requested drive torque is either performance or safety related.
Abstract:
A method is provided for controlling a hybrid automotive vehicle equipped with an internal combustion engine, and an electric machine connected to an energy storage system includes a) during a mission of the vehicle, estimation of the temperature of the energy storage system at the beginning of a next mission of the vehicle, and b) if the temperature estimated at step a) is below a threshold value, recharging, before the end of the current mission (If the vehicle, the energy storage system on the basis of the temperature estimated at step a). In a step c), if the energy storage system has been recharged at step b), then, at the beginning of the next operating period of the vehicle, the energy storage system is heavily discharged. With this method, the battery rapidly reaches the desired temperature when driving off again at the beginning of the next mission.
Abstract:
An ECU for controlling an engine counts an unused time TIM of engine in a low-temperature environment. If the unused time TIM is shorter than a predetermined reference value, the ECU sets idle speed immediately after start of operation of the engine to a first idle speed, and if the unused time TIM is longer than the reference value, sets the idle speed to a second idle speed higher than the first idle speed. If duration of the second idle speed exceeds a reference period determined by state of driving of the vehicle, the ECU sets the idle speed to be lower than the second idle speed. In this manner, increased vibration in idling operation in a low-temperature environment can be prevented.
Abstract:
One embodiment relates to a system for idle reduction in a hybrid vehicle. The system includes a control system for causing the vehicle to operate in a charge depletion mode, or a charge accumulation mode in response to job site data; the job site data can include an estimate of the amount of energy required at the job site.
Abstract:
A vehicle control device includes an engine stop/start determination unit and an engine controller and a re-acceleration scene predicting unit. The engine stop/start determination unit determines stopping and starting of the engine based on a magnitude of the accelerator position opening amount unit. The engine controller carries out the stopping/starting of the engine in accordance with the determination of the engine stop/start determination unit. The re-acceleration scene predicting unit predicts a re-acceleration scene in which an accelerator is depressed after the accelerator has been released based on the accelerator position opening amount. When the re-acceleration scene predicting unit predicts a re-acceleration scene of the engine, the engine stop/start determination unit prohibits the stopping of the engine while the engine is running, and the starting of the engine is carried out by the accelerator being depressed while the engine is stopped.
Abstract:
An example method of controlling an electric vehicle includes altering operation of an electric vehicle in response to a predicted energy consumption rate. The method includes adjusting the predicted energy consumption in response to variations in past energy consumption rates.
Abstract:
A diagnostic method for an a posteriori analysis of behavior of a vehicle braking system, the braking system including a regenerative braking mechanism, an additional braking mechanism, and a distribution device, the method including storing, in a non-volatile memory, at least one current value of a braking parameter from the distribution device for subsequent analysis based on the at least one value stored in the non-volatile memory, wherein the storage is triggered by execution of at least one event.
Abstract:
In one aspect, a method for reducing fuel consumption of a work vehicle is disclosed. The method may generally include determining, with a controller, a load power requirement for the work vehicle, determining a plurality of candidate engine speeds at which the load power requirement is achievable, analyzing stored efficiency data for a transmission and at least one additional component of the work vehicle to determine a power loss value for each candidate engine speed, determining a candidate engine power for each candidate engine speed based on the load power requirement and the power loss values and analyzing stored fuel efficiency data based on the candidate engine powers to determine a target engine speed for the work vehicle.
Abstract:
An information processing apparatus includes a generation section configured to generate, from a state of a mobile vehicle in each position obtained by discretizing a traveling route along which the mobile vehicle travels, a state of the mobile vehicle in a next position for each use state of drive means contained in the mobile vehicle; and an optimization section configured to optimize the use state of the drive means in each position based on at least one of states of the mobile vehicle in each position generated by the generation section.
Abstract:
A technique for assigning lanes on a road to objects moving in a vicinity of a vehicle on the road is proposed. A method embodiment of the invention comprises the steps of providing trajectories, wherein the or each trajectory represents a time sequence of positions of a moving object; selecting first and second objects and determining a distance between a current position of the first object and the trajectory of the second object; comparing the distance with a predefined threshold; and providing, based on a result of the comparison, a lane assignment indicating a lane to which the second object is assigned.