摘要:
A device with multiple encapsulated functional layers, includes a substrate, a first functional layer positioned above a top surface of the substrate, the functional layer including a first device portion, a first encapsulating layer encapsulating the first functional layer, a second functional layer positioned above the first encapsulating layer, the second functional layer including a second device portion, and a second encapsulating layer encapsulating the second functional layer.
摘要:
A MEMS and a method of manufacturing MEMS components are provided. The method includes providing a MEMS wafer stack including a top cap wafer, a MEMS wafer and optionally a bottom cap wafer. The MEMS wafer has MEMS structures patterned therein. The MEMS wafer and the cap wafers include insulated conducting channels forming insulated conducting pathways extending within the wafer stack. The wafer stack is bonded to an integrated circuit wafer having electrical contacts on its top side, such that the insulated conducting pathways extend from the integrated circuit wafer to the outer side of the top cap wafer. Electrical contacts on the outer side of the top cap wafer are formed and are electrically connected to the respective insulated conducting channels of the top cap wafer. The MEMS wafer stack and the integrated circuit wafer are then diced into components having respective sealed chambers and MEMS structures housed therein.
摘要:
Microstructure plating systems and methods are described herein. One method includes depositing a plating-resistant material between a microstructure and a bonding layer, wherein the microstructure comprises a plating process base material and immersing the microstructure in a plating solution.
摘要:
An integrated circuit includes a number of metallization levels separated by an insulating region disposed over a substrate. A housing includes walls formed from metal portions produced in various metallization levels. A metal device is housed in the housing. An aperture is produced in at least one wall of the housing. An external mechanism outside of the housing is configured so as to form an obstacle to diffusion of a fluid out of the housing through the at least one aperture. At least one through-metallization passes through the external mechanism and penetrates into the housing through the aperture in order to make contact with at least one element of the metal device.
摘要:
The invention relates to a method for producing a micro-electromechanical device in a material substrate suitable for producing integrated electronic components, in particular a semiconductor substrate, wherein a material substrate (12,14,16) is provided on which at least one surface structure (26) is to be formed during production of the device. An electronic component (30) is formed in the material substrate (12,14,16) using process steps of a conventional method for producing integrated electronic components. A component element (44) defining the position of the electronic component (30) and/or required for the function of the electronic component (30) is selectively formed on the material substrate (12,14,16) from an etching stop material acting as an etching stop in case of etching of the material substrate (12,14,16) and/or in case of etching of a material layer (52) disposed on the material substrate (12,14,16). When the component element (44) of the electronic component (30) is implemented, a bounding region (48) is also formed on the material substrate (12,14,16) along at least a partial section of an edge of the surface structure (26), wherein said bounding region bounds said partial section. The material substrate (12,14, 16) thus implemented is selectively etched for forming the surface structure (26), in that the edge of the bounding region (48) defines the position of the surface structure (26) to be implemented on the material substrate (12, 14,16).
摘要:
A semiconductor package comprising a suspended beam portion including an arrangement of through-hole structures. In an embodiment, a first surface of the suspended beam portion includes edges each defining in part a respective through-hole of a plurality of through-holes extending between the first surface and a second surface. The first surface comprises a plurality of arm portions each located between a respective pair of edge-adjacent edges. The first surface comprises a plurality of node portions each located at a respective junction of three or more of the plurality of arm portions. In another embodiment, for each of the plurality of node portions, a respective total number of arm portions which join one another at the node portion is a number other than four, or two arm portions which join one another at the node portion have respective mid-lines which are oblique to one another.
摘要:
The present invention generally relates to an architecture for isolating an RF MEMS device from a substrate and driving circuit, series and shunt DVC die architectures, and smaller MEMS arrays for high frequency communications. The semiconductor device has one or more cells with a plurality of MEMS devices therein. The MEMS device operates by applying an electrical bias to either a pull-up electrode or a pull-down electrode to move a switching element of the MEMS device between a first position spaced a first distance from an RF electrode and a second position spaced a second distance different than the first distance from the RF electrode. The pull-up and/or pull-off electrode may be coupled to a resistor to isolate the MEMS device from the substrate.
摘要:
Structure and method for fabricating a barrier layer that separates an electromechanical device and a CMOS device on a substrate. An example structure includes a protective layer encapsulating the electromechanical device, where the barrier layer may withstand an etch process capable of removing the protective layer, but not the barrier layer. The substrate may be silicon-on-insulator or a multilayer wafer substrate. The electromechanical device may be a microelectromechanical system (MEMS) or a nanoelectromechanical system (NEMS).
摘要:
Structure and method for fabricating a barrier layer that separates an electromechanical device and a CMOS device on a substrate. An example structure includes a protective layer encapsulating the electromechanical device, where the barrier layer may withstand an etch process capable of removing the protective layer, but not the barrier layer. The substrate may be silicon-on-insulator or a multilayer wafer substrate. The electromechanical device may be a microelectromechanical system (MEMS) or a nanoelectromechanical system (NEMS).
摘要:
A structure includes a silicon layer disposed on a buried oxide layer that is disposed on a substrate; at least one transistor device formed on or in the silicon layer, the at least one transistor having metallization; a released region of the silicon layer disposed over a cavity in the buried oxide layer; a back end of line (BEOL) dielectric film stack overlying the silicon layer and the at least one transistor device; a nitride layer overlying the BEOL dielectric film stack; a hard mask formed as a layer of hafnium oxide overlying the nitride layer; and an opening made through the layer of hafnium oxide, the layer of nitride and the BEOL dielectric film stack to expose the released region of the silicon layer disposed over the cavity in the buried oxide layer. The hard mask protects the underlying material during a MEMS/NEMS HF vapor release procedure.