Abstract:
Method of manufacturing a multi-layer metal cord having a plurality of concentric layers of wires, comprising one or more inner layer(s) and an outer layer, of the type “rubberized in situ.” The method includes the following steps: at least one step of sheathing at least one inner layer with the rubber or the rubber composition by passing through at least one extrusion head; and an assembling step in which the wires of the outer layer are assembled around the inner layer adjacent to it, in order to form the multi-layer cord thus rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer extruded in the molten state, preferably a thermoplastic elastomer of the thermoplastic stirene (TPS) elastomer type such as an SBS, SBBS, SIS or SBIS block copolymer for example.
Abstract:
Multistrand metal cable of 4×(4+M) construction, which can especially be used for reinforcing tire belts for industrial vehicles, formed from four elementary strands assembled in a helix with a helix pitch P3, each elementary strand consisting of a two-layer cable of 4+M construction comprising an inner layer C1 formed from four wires of diameter D1, assembled in a helix with a pitch P1, and an unsaturated outer layer C2 of M wires, M being greater than or equal to 8 and smaller than or equal to 11, of diameter D2, these being assembled in a helix with a pitch P2 around the inner layer C1, P1 being smaller than P2, the four wires of the inner layer C1 being wound in a helix in the same twist direction as the M wires of the outer layer C2, and wherein each of the diameters D1 and D2 is greater than or equal to 0.10 mm but less than or equal to 0.50 mm.
Abstract:
The present invention is related a steel cord (500, 600) comprising one or more strands (504, 602), said strands comprising at least two filaments, wherein the void spaces between at least two filaments of at least one of said one or more strands are at least partially filled with a composition comprising a thermosetting material (506, 606), characterized in that the thermosetting material (506, 606) is a heat-curable one-component thermosetting material. Further, the invention relates to a steel cord (100, 200, 300) comprising at least two strands (102, 104, 202, 204, 302, 304), said strands comprising at least two filaments, wherein the void spaces (105, 205, 305) between at least two strands are at least partially filled with a composition comprising a thermosetting material (106, 206, 306), characterized in that the thermosetting material (106, 206, 306) is a heat-curable one-component thermosetting material.
Abstract:
The twistless and/or weakly twisted wire rope or cable with the many strand many layer structure comprises a core rope and a cover layer stranded on the core rope in an opposite stranding direction. The core rope is made exclusively from substantially circular strands and the cover layer is made exclusively from only one layer of substantially flat strands.
Abstract:
A wire rope or strand is provided with a plastic foam type internal sealant and corrosion resistant outer strands or wires to provide superior corrosion resistance at low cost for wire strands and ropes requiring a bare metal surface.
Abstract:
Provided is an elastomer reinforcement cord with improved rust inhibition. An elastomer reinforcement cord (10) includes metal filaments and a polymer material. The elastomer reinforcement cord (10) has a multi-strand structure which includes: at least one core strand (21) formed by twisting plural metal filaments (1a) and (1b) together; and two or more sheath strands (22) each formed by twisting plural metal filaments (11a) and (11b) together, and in which the sheath strands are twisted together around the core strand. In a region surrounded by a line connecting the centers of the metal filaments constituting the outermost sheath layer of the core strand at a cross-section in a direction orthogonal to an axial direction after vulcanization of the core strand, when a region occupied by other than the metal filaments is defined as a gap region, a filling rate, which is a ratio of the area of the polymer material with respect to the gap region, is 52% to 120%.
Abstract:
A cord rubberized in situ (C). Internal layer of the cord (CT1) comprises N1 internal thread(s). External layer of the cord (CT3) comprises N3 external threads wound helically around the internal layer of the cord. Rubber composition (20) is positioned between the internal layer of the cord and the external layer of the cord, and comprises a compound of formula (I) or a salt of this compound: in which: each R1, R2 and R3 group represents, independently of one another, an alkylene, arylene, arylalkylene, alkylarylene or cycloalkylene group, each X1 and X2 group represents, independently of each other, —COOH, —CO—NH—OH, —SOOH, —PO(OR)(R′) or —PO(OR)(OR′) with R and R′ representing, independently of each other, hydrogen or an alkyl group, and X3 comprises at least one —COOH, —CO—NH—OH, —SOOH, —PO(OR)(R′) or —PO(OR)(OR′) group with R and R′ representing, independently of each other, hydrogen or an alkyl group.
Abstract:
A metal cord has an M+N construction with two concentric layers. An internal first layer or core includes M wire(s) of diameter d1, M having a value from 1 to 4. An external second layer includes N wires of diameter d2 and is positioned around the core, the N wires being wound in a helix. Between the wires of the two layers are gaps, some or all of which include a filling rubber based on an unsaturated thermoplastic elastomer. The filling rubber may be, for example, based on an SBS or an SIS block copolymer. When used in a molten state, the thermoplastic elastomer presents no problem due to unwanted stickiness if the filling rubber overspills outside the cord after manufacture. The unsaturated and therefore (co)vulcanizable nature of the thermoplastic elastomer makes it compatible with diene rubber matrices used as calendering rubber in metal fabrics intended for reinforcing tires.
Abstract:
A method of manufacturing a metal cord with two concentric layers of wires is provided. The cord includes an internal layer of M wires, M having a value from 1 to 4, and an external layer of N wires. The cord is rubberized from within in situ. That is, during manufacture of the cord, the cord is rubberized from inside. According to the method, the internal layer is sheathed with rubber or a rubber compound by passing the internal layer through an extrusion head, and the N wires of the external layer are assembled around the sheathed internal layer to form a two-layer cord rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer that is extruded in a molten state, and preferably is a thermoplastic styrene (TPS) type of thermoplastic elastomer, such as an SBS or an SIS block copolymer, for example.
Abstract:
A cable, which may be produced by the method described herein, comprises a cable with a core jacket comprising a predetermined cable length where the core jacket comprises a thermoplastic material comprising a memory characteristic which changes based on temperature, a set of core components, disposed within the core jacket, which comprise the predetermined length, and a strength member disposed within the core jacket intermediate the core components and the core jacket. The strength member comprises a selectively activated pre-impregnated uncured synthetic material adapted to be cured while in production, the strength member comprising a length substantially equal to the predetermined length.