Abstract:
The three dimensional (3D) circuit includes a first tier including a semiconductor substrate, a second tier disposed adjacent to the first tier, a three dimensional inductor including an inductive element portion, the inductive element portion including a conductive via extending from the first tier to a dielectric layer of the second tier. The 3D circuit includes a ground shield surrounding at least a portion of the conductive via. In some embodiments, the ground shield includes a hollow cylindrical cage. In some embodiments, the 3D circuit is a low noise amplifier.
Abstract:
The present disclosure relates to power supply circuitry that has wide bandwidth and achieves high efficiency by using at least one energy storage element for efficient power transfer between two power supply circuits and to an amplitude modulated load. Specifically, the power supply circuitry may include a first power supply circuit, which may be a switching power supply circuit, a second power supply circuit, which may be a linear power supply circuit and may include the energy storage element, and control circuitry to facilitate efficient power transfer. The control circuitry may select one of multiple operating modes, which may include a first operating mode, during which the first power supply circuit may provide power to the energy storage element, and a second operating mode, during which the second power supply circuit may provide power to the amplitude modulated load from the energy storage element.
Abstract:
A DAC using current mirrors suitable for use in a modulator. Embodiments include a current-generating circuit to provide an information signal; a bias current source; a current mirror having a mirror input transistor connected to the current generating circuit and the bias current source, and being driven by the bias current and the varying current signal and having a corresponding varying voltage signal at a control terminal; a signal shaping filter interposed between the mirror input transistor and an output mirror transistor configured to limit a bandwidth of the varying voltage signal; the output mirror transistor configured to generate a band-limited varying current signal and a mirrored bias current; and, a mirrored bias current reduction circuit connected to the output mirror transistor configured to reduce the mirrored bias current.
Abstract:
A transconductance amplifier mirror circuit is connected to an electrode for sensing the capacitance of the electrode with reference to ground, or the capacitance between the electrode and another electrode. A voltage level change is produced on the electrode connected to the transconductance amplifier mirror circuit to cause the transconductance amplifier mirror circuit to supply charges to or drain charges from a charge calculation circuit. The charge amount variation is converted to a signal for calculating the sensed capacitance.
Abstract:
An N-way radio frequency (RF) divider/combiner is formed as a combination including an input port electrically coupled to a first 2-way divider/combiner and a second 2-way divider/combiner. An antenna may be coupled to at least one port of the N-way divider. The antenna may be formed as a compound printed loop (CPL) antenna. The N-way RF divider/combiner may be configured to provide N inputs and M output ports, wherein N and M are integers and any of the M output ports and N input ports can be connected to any combinations of devices. Such devices may include, e.g., an antenna including but not limited to a CPL antenna, RF receive port, transmit port, amplifier, RF switch, low noise amplifier (LNA), oscillator, tuning circuit, matching circuit, lumped element circuit, active circuit, diode, adjustable inductive circuit, and adjustable capacitive circuit.
Abstract:
A power circuit includes a bridge circuit connected to a first node by which an output voltage is supplied to a load circuit including an amplifier containing a CMOS inverter, and configured to generate a current flowing in a first current channel and a current flowing in a second current channel in accordance with a voltage difference between the output voltage and a predetermined set voltage to be supplied to the load circuit, and a current amplifier configured to generate a current flowing in a third current channel to the load circuit in accordance with an input source voltage and a difference between the current flowing in the first current channel and the current flowing in the second current channel. The predetermined set voltage that is supplied to the load circuit achieves the smallest transconductance during normal operation of the amplifier.
Abstract:
An analysis technique for (Doherty) amplifiers having a main amplifier branch and at least one peak amplifier branch. For a given input power level and assumed amplifier impedance levels, an output power level and phase response are obtained for each active device using appropriate load-pull data based on the impedance levels. The performance of the amplifier is analyzed based on the impedance levels, output power levels, and phase responses to generate updated impedance levels. The analysis is repeated until the updated impedance levels converge on steady state values. The analysis can be repeated for different input power levels. Main and peak output matching networks for the amplifier can be designed by iteratively adjusting impedance levels for the networks using appropriate load-pull contours. For the design and analysis phases, the load-pull contours include Class-AB data for the main amplifier device and Class-C data for the peak amplifier device.
Abstract:
A device includes a low noise amplifier (LNA) for amplifying an input signal, with the LNA including a first transistor configured to receive the input signal, a second transistor configured to receive a bias current and forming a current mirror for the first transistor, and an operational amplifier (op amp) operative to generate a bias voltage for the first and second transistors to match operating points of the first and second transistors.
Abstract:
Techniques for monitoring and controlling bias current of amplifiers are described. In an exemplary design, an apparatus may include an amplifier and a bias circuit. The amplifier may include at least one transistor coupled to an inductor. The bias circuit may generate at least one bias voltage for the at least one transistor in the amplifier to obtain a target bias current for the amplifier. The bias circuit may generate the at least one bias voltage based on a voltage across the inductor in the amplifier, or a current through a current mirror formed with one of the at least one transistor in the amplifier, or a gate-to-source voltage of one of the at least one transistor in the amplifier, or a voltage in a replica circuit replicating the amplifier, or a current applied to the amplifier with a switched mode power supply disabled.
Abstract:
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.