Abstract:
An embodiment relates to a control device for an electric load and to a corresponding method for operating such a control device, the control device being designed as an insert module for inserting into an insert shaft. Depending on the design, the insert shaft is provided with or without a storing device for storing configuration data and/or operating parameters of the control device or the electric load. The control device includes: a) a first device for checking whether a storing device is present or not, b) a second device for implementing the function of reading the parameters and data for operating the control device if a storing device is present, the parameters and data being stored in the storing device, and not carrying out a start-up if a storing device is not present, and c) the function of not carrying out a start-up when a storing device is not present can be deactivated.
Abstract:
A system for dynamically managing and controlling distributed energy resources in a transmission/distribution power grid is disclosed. A plurality of regions within a transmission/distribution power grid is autonomously managed using regional control modules. Each regional control module oversees the management and control of the transmission/distribution power grid and is further associated with a plurality of local control modules that interface with distributed energy resources within a region. Power production and power consumption are monitored and analyzed by the enterprise control module which, upon determining that power consumption within a region does not match power producing capability, dynamically reallocates distributed energy resources throughout the grid keeping the system balance. Power flow at key nodes within the network are monitored and analyzed by the local control modules, regional control modules, and enterprise control modules with compensating actions taken in the event that system parameter risks violating safety, stability, or operational thresholds.
Abstract:
Methods and apparatuses for optimizing performance using data from an Internet of Things (IoT) device with analytics engines. The method receives, from a requesting Internet of Things (IoT) device, a request for trend data of physical resource consumption based at least in part on a portion of received data from at least one of a plurality of IoT devices. The method retrieves, from memory of an analytics engine, at least the portion of the received data. The method calculates, in a calculator of the analytics engine, the trend data based on at least the portion of the received data. The method transmits, to the requesting IoT device, the calculated trend data, wherein the requesting IoT device adjusts parameters in an IoT device using the calculated trend data.
Abstract:
Embodiments of the present disclosure include a method for associating at least two components of a plurality of components of a building automation system. In one embodiment, the method may include operating a first component of the at least two components in a first mode to issue commands to one of the other components of the automation system and a second component of the at least two components, wherein the first component is a control device and the second component is controlled by the first component. The method may further include operating the first component in a second mode, wherein the second mode facilitates altering a relationship between the first and second components.
Abstract:
A controller for a building management system includes a system of rules for detecting faults in the building management system. The rules include content conditions and trigger conditions. The content conditions are not checked until one or more of the trigger conditions are met. A rule-based fault detection engine may be implemented by a low level building equipment controller. One or more thresholds for a rule may be automatically or manually adjusted.
Abstract:
An HVAC controller and a method of controlling an HVAC system. In one embodiment, the controller includes: (1) a processor couplable to at least one indoor air quality sensor to receive values therefrom representing at least three levels of indoor air quality and (2) memory coupled to the processor and configured to store a software program capable of causing the processor to control an HVAC system based on magnitudes of the values.
Abstract:
Disclosed herein is a heating, ventilating, and air conditioning (HVAC) unit and controller with memory provisions for storing, receiving, and transmitting customer equipment profiles. The controller may include a plurality of profiles that allows a selection thereof for restoration. A method for configuring HVAC equipment, including a customer profile database and efficiently transmitting unique customer and factory profiles, is also disclosed.
Abstract:
Systems and methods are described that allow a Programmable Logic Controller (PLC) to receive Demand Response (DR) data and process the data in a PLC Function Block (FB). Embodiments provide a PLC demand response FB that solicits DR data and a demand response load manager FB that compares the DR data with predetermined demand constraints corresponding to electrical equipment. The demand constraints provide energy consumption strategies for buildings and factories.
Abstract:
A smart switch applied to a smart home system is connected to a power supply and at least one electronic device. The smart switch includes a storage, a power detecting unit configured to detect real-time power consumption of the electronic device connected to the smart switch and a processor unit. A table including identification code of the electronic device, a pre-determined power value relating to each electronic device and the relationship therebetween is stored in the storage. The processor unit includes a determining module configured to determine whether the real-time power of an electronic device is lower than a corresponding pre-determined power value, and a control module configured to cut off the power supply of the electronic device when the determining module determines that the real-time power of the electronic device is lower than the pre-determined power value. A smart home system is also provided.
Abstract:
A control module with connection devices for connection to connection terminals of a load feeder is disclosed. The control module may include a device interface for at least one connection, the interface being independent of the bus system, with a shut-off element able to be connected to the at least one connection device and with the load feeder able to be shut off by way of the shut-off element independently of the bus system. The control module may be plugged into connection terminals of the load feeder.