摘要:
Disclosed herein are indium-tin-oxide nanoparticles and a method for continuously producing precipitated indium-tin nanoparticles having a particle size range of substantially from about 10 nm to about 200 nm and a substantially consistent ratio of indium to tin in the resultant nanoparticles across the duration of the continuous process, based on the ratio of indium to tin in a seeding solution. The method comprises preparing intermediate indium and tin compounds of the general formula [M(OH)xCy], where M represents the indium or tin ionic component of indium or tin salts, C represents the cationic component of indium or tin salt(s), x is a number greater than 0 and y=[M*valance−x]/C* valance in the seeding solution. The intermediate compounds are continuously precipitated with a base solution in a reaction vessel initially having a solvent contained therein. The method also provides a means for controlling the shape of the resultant nanoparticles. The resultant indium-tin nanoparticles may be further processed into dispersions.
摘要:
Provided is a mesoporous particle having a flaky shape, having a single-layer structure, having a thickness of 0.1 μm to 3 μm, and having an average pore diameter of 10 nm or more. The mesoporous particle can be obtained by a production method including: feeding a metal oxide sol having a pH of 7 or higher and containing metal oxide colloidal particles as dispersoids and water as a dispersion medium, into a liquid containing a water-miscible solvent having a relative permittivity of 30 or lower (protic solvent) or of 40 or lower (aprotic solvent) at 20° C., and thereby forming a flaky aggregate of the metal oxide colloidal particles in the liquid; and subjecting the aggregate to treatment such as drying and heating, and thereby converting the aggregate into a flaky particle that is insoluble in water.
摘要:
The following invention relates to a novel and efficient nanoparticles synthesis reactor and process production. More particularly, the present invention is applied to the synthesis of nanostructured tin dioxide. The benefits provided by the invention can be seen in various gaseous reactions where occurs the formation of solid and gaseous phases.
摘要:
An object and a problem of the present invention is to provide tin (II) oxide powder which has extremely high solubility in an acid or an acidic plating solution and excellent in storage stability in the air. The tin (II) oxide powder of the present invention is for replenishing a tin component of a tin-alloy plating solution, and comprises 100 to 5000 ppm of an antioxidant being contained in the powder with a mass ratio, and has such a dissolution rate that when 0.1 g of the tin (II) oxide powder is added to 100 ml of 100 g/L aqueous alkylsulfonic acid solution at a temperature of 25° C. and stirred, then the powder dissolves therein within 180 seconds.
摘要:
An object of the present invention is to provide tin(II) oxide powder which has extremely high solubility in an acid or an acidic plating solution, excellent in storage stability in the air and can heighten oxidation-preventive effect of Sn2+ ion in the plating solution. The method for manufacturing tin(II) oxide powder of the present invention comprises Step (11) of preparing an aqueous acidic solution containing Sn2+ ions, Step (12) of neutralizing the aqueous acidic solution by adding an aqueous alkaline solution to prepare a slurry of tin(II) hydroxide, Step (13) of dehydrating the prepared slurry to obtain a slurry of tin(II) oxide, Step (14) of separating the slurry of tin(II) oxide into a solid and a liquid to obtain tin(II) oxide, Step (15) of treating the obtained tin(II) oxide with an aqueous antioxidant solution, and Step (16) of vacuum drying the tin(II) oxide treated with the aqueous antioxidant solution.
摘要:
Disclosed is an oxide for a semiconductor layer of a thin-film transistor, said oxide being excellent in the switching characteristics of a thin-film transistor, specifically enabling favorable characteristics to be stably obtained even in a region of which the ZnO concentration is high and even after forming a passivation layer and after applying stress. The oxide is used in a semiconductor layer of a thin-film transistor, and the aforementioned oxide contains Zn and Sn, and further contains at least one element selected from group X consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and the rare-earth elements.
摘要:
Proposed is a method for collecting valuable metal from an ITO scrap including the steps of subjecting the ITO scrap to electrolysis in pH-adjusted electrolyte, and collecting indium or tin as oxides. Additionally proposed is a method for collecting valuable metal from an ITO scrap including the steps of subjecting the ITO scrap to electrolysis in an electrolytic bath partitioned with a diaphragm or an ion-exchange membrane to precipitate hydroxide of tin, thereafter extracting anolyte temporarily, and precipitating and collecting indium contained in the anolyte as hydroxide. With the methods for collecting valuable metal from an ITO scrap described above, indium or tin may be collected as oxides by roasting the precipitate containing indium or tin. Consequently, provided is a method for efficiently collecting indium from an ITO scrap of an indium-tin oxide (ITO) sputtering target or an ITO scrap such as ITO mill ends arisen during the manufacture of such ITO sputtering target.
摘要:
A method is disclosed for coating a positive active material of a lithium-ion battery. The method includes the step of dissolving at least one salt that contains a coating metal in a solvent to provide a solution, the step of dissolving a lithium-containing positive active material in the solution and adjusting the pH value of the solution to deposit M(OH)2n on the lithium-containing positive active material, the step of drying the M(OH)2n and the lithium-containing positive active material, and the step of sintering the M(OH)2n and the lithium-containing positive active material to coat the lithium-containing positive active material with MOn.
摘要:
A process for manufacturing indium tin oxide (ITO) sputtering targets as described. The process includes the precipitation of indium and tin hydroxides, sintering in the absence of chloride ions, using the resultant oxide powders to prepare an aqueous slip with dispersing agent, binder, special high density promoting agents and compacting the slip in a specially surface coated porous mold using the method of slip casting followed by sintering the resultant compacted target body to yield high density ITO target.
摘要:
Proposed is a method for collecting valuable metal from an ITO scrap including the steps of subjecting the ITO scrap to electrolysis in pH-adjusted electrolyte, and collecting indium or tin as oxides. Additionally proposed is a method for collecting valuable metal from an ITO scrap including the steps of subjecting the ITO scrap to electrolysis in an electrolytic bath partitioned with a diaphragm or an ion-exchange membrane to precipitate hydroxide of tin, thereafter extracting anolyte temporarily, and precipitating and collecting indium contained in the anolyte as hydroxide. With the methods for collecting valuable metal from an ITO scrap described above, indium or tin may be collected as oxides by roasting the precipitate containing indium or tin. Consequently, provided is a method for efficiently collecting indium from an ITO scrap of an indium-tin oxide (ITO) sputtering target or an ITO scrap such as ITO mill ends arisen during the manufacture of such ITO sputtering target.