Abstract:
An apparatus for generating electron radiation comprises: an elongated, wire-shaped hot cathode to emit electron radiation having an elongated, line-shaped cross section perpendicular to a direction of propagation of the electron radiation; a cathode electrode; an anode electrode with an opening through which the electron radiation emitted from the hot cathode can pass, wherein a voltage applied between the cathode electrode and the anode electrode accelerates electrons emitted from the hot cathode; and a deflecting unit to deflect the electron radiation downstream of the opening of the anode electrode, wherein a cross section of the electron radiation perpendicular to the direction of propagation is changed by the deflecting unit to decease a longitudinal extent of the electron radiation and to increase a transverse extent of the electron radiation such that longitudinal and transverse extents of the electron radiation perpendicular to the direction of propagation are about the same size.
Abstract:
An improved cathode comprises a cone-shaped emitter with a carbon-based coating applied to the emitter cone surface, in which there is a narrow annular gap between the emitter body and the carbon coating. The gap prevents direct contact between the carbon coating and the crystalline emitting material, thereby preventing damaging interactions and extending the useful lifetime of the cathode.
Abstract:
A high frequency cathode heater supply for a microwave source includes a SMPS inverter and an isolation transformer having a primary winding arranged to be powered by the SMPS inverter, a monitor winding passing through primary core assemblies of the primary winding and a secondary winding arranged for connection to the cathode heater. A current monitor is arranged to monitor a current in the primary windings. Signal processing modules are arranged to receive a first input signal from the monitor winding indicative of a voltage across the cathode heater and a second input signal from the current monitor indicative of a current through the cathode heater. The signal processing modules are arranged to output a control signal to the SMPS inverter to control power supplied to the cathode heater dependent on a monitored resistance of, or monitored power supplied to, the cathode heater as determined from the first input signal and the second input signal.
Abstract:
An electron beam focusing electrode and an electron gun using the same may include a plate having a polygonal through-hole; at least a projecting portion formed on at least one side of the through-hole. By using the electron beam focusing electrode, a spreading phenomenon of an electron beam having a rectangular cross section may be reduced. Further, the output of the electron gun may be increased, and electron beams may be easily focused.
Abstract:
An apparatus and method comprising a cathode structure which can be a cylindrical filament coiled in a helix or which can be constructed of a ribbon or other suitable shape. The cathode structure can be heated by passage of an electrical current, or by other means such as bombardment with energetic electrons. Selected portions of the surface of the cathode structure have an altered property with respect to the non-selected portions of the surface. In one embodiment, the altered property is a curvature. In another embodiment, the altered property is a work function. By altering the property of the selected portions of the surface, the electron beam intensity is increased, and the width is decreased.
Abstract:
An electron source excellent in the uniformity in current emission distribution is provided certainly and at a low cost.A process for producing an electron source having an electron emitting portion at one end of a rod, which comprises a step of forming the electron emitting portion by machining, and a step of removing a damaged layer at the surface of the formed electron emitting portion by chemical polishing or electrolytic polishing.
Abstract:
In accordance with one embodiment of the present invention, there is provided a switch-mode power supply to generate the heating current for a hot-filament electron-emitting cathode. The power supply directly couples, without an output transformer, the output from a full-bridge converter that operates at an output frequency in the range from ten Hz to ten kHz. A connection to a reference potential that minimizes the potential fluctuation of the cathode is provided by one of the direct-current inputs to the converter.
Abstract:
A cathode heater of a cathode ray tube is rapidly energized either when turning on electric power or when returning to a power-on state mode of the Display Power Management System (DPMS) in an electronic appliance using the cathode ray tube as a video display device. A high voltage generation unit is provided for generating a voltage higher than a rated voltage of the cathode heater of the cathode ray tube. The cathode ray tube enables a stable video display to be presented in a shorter time period due to a rapid heating of the cathode caused when an initial heating unit applies a voltage to the cathode heater which is higher than the rated voltage of the cathode heater, according to a pulse signal which exists for a predetermined time period when turning on electric power or when returning to a power-on state mode of the DPMS. A voltage drop unit is provided to drop the voltage of the high voltage generation unit to the rated voltage of the cathode heater when the predetermined time period elapses so that the cathode heater is thereafter energized with the rated voltage for that cathode heater, in order to maintain the cathode at a normal operating temperature.