摘要:
The present invention relates to a polymer supported reagent comprising a novel crosslinked mesoporous polymer, enabling a simple and easy production of an azoxy compound or an azo compound from an aromatic nitro compound, and a method of selectively reducing an aromatic nitro compound by using the same. The polymer supported reagent comprises a certain acrylamide mesoporous crosslinked polymer.
摘要:
To provide a hydrogenation catalyst which does not contain chromium oxide, unlike conventional copper/chromium oxide catalysts, and therefore does not cause any environmental contamination or health hazard, and which shows an activity, selectivity and durability at equivalent or higher levels to or than those of conventional copper/chromium oxide catalysts. A hydrogenation catalyst which comprises, as the main components, (1) copper and (2) at least one member selected from the group consisting of silicon oxide, calcium oxide and calcium silicate, wherein the content of the copper is from 20 to 60 wt % based on the entire amount of the hydrogenation catalyst, and in the calcium silicate, the molar ratio of calcium oxide (CaO) to silicon oxide (SiO2) is less than 1.
摘要:
The invention relates to a process for the preparation of aromatic amines in the liquid phase by catalytic hydrogenation of the corresponding nitroaromatic compounds in at least two reaction spaces connected in series, wherein at least one reaction space is operated isothermally and at least the reaction space connected downstream thereof is operated adiabatically, and in preferred embodiments the sudden adiabatic temperature change is used for monitoring the reaction.
摘要:
The invention relates to a process for the continuous preparation of aromatic amines by hydrogenation of the corresponding nitroaromatics in the presence of catalysts arranged in reaction spaces, in which an adiabatically operated reaction space RA is connected downstream of an isothermally operated reaction space RI and RA additionally also has a separate feed for the nitroaromatic to be hydrogenated, RI is fed with the nitroaromatic to be hydrogenated from the start to the end of the hydrogenation, and the product mixture emerging from RI is fed into RA from the start to the end of the hydrogenation, wherein RA can additionally be fed via the separate feed with the nitroaromatic to be hydrogenated.
摘要:
The catalytic mixture resulting of a metal powder catalyst with a solid material (referred to here as a reaction-aid) that has good filtering properties, does not interfere with the reaction, does not interfere with recycling the catalyst back into the reaction, does not interfere with the refining and recovery of the metal from the catalyst after it is spent, and will not become separated from the catalyst during the preparation of this catalytic mixture, the chemical reaction or the separation of this catalytic mixture from the reaction medium, whereas the ratio of the reaction aid to the catalyst ranges from 0.05 to 20 on a weight basis. A preferred metal powder catalyst is acetylene black supported precious metal. Preferred reaction aids are sibunit powder or activated carbon. The catalytic mixture can be used for the catalytic transformation of compounds, such as the hydrogenation of olefins, or the hydrogenation of nitro compounds.
摘要:
A process for preparing alkylated p-phenylenediamine having the steps of reacting aniline and nitrobenzene in presence of a complex base catalyst to obtain 4-aminodiphenylamine intermediates, hydrogenating the 4-aminodiphenylamine intermediates to 4-aminodiphenylamine in presence of a hydrogenation catalyst, and reductively alkylating the 4-aminodiphenylamine to alkylated p-phenylenediamine.
摘要:
A novel synthesis of the anti-androgen, A52, which has been found to be useful in the treatment of prostate cancer, is provided. A52 as well as structurally related analogs may be prepared via the inventive route. This new synthetic scheme may be used to prepare kilogram scale quantities of pure A52.
摘要:
Pt0-nanoparticles in the size range of 0 to 10 nm were prepared in-situ by impregnation of H2PtCl66H2O into the nanopores of modified montmorillonite followed by reduction with different reducing agents like ethylene glycol, sodium citrate, hydrogen, hydrazine and sodium borohydrate. The montmorillonite was modified by activation with mineral acids under controlled condition for generating desired nanopores. XRD pattern of Pt0-nanoparticles revealed the formation of face centered cubic (fcc) lattice. These supported Pt0-nanoparticles show efficient catalytic activity for the selective reduction of chloronitrobenzenes. As a typical example, at a H2 pressure of 10 bars, temperature 45° C. for a period of 15 min, the Pt0-nanoparticles (prepared by reduction with hydrazine) exhibit conversion of o-chloronitrobenzene up to 100% and selectivity >99% to o-chloroanilines with very negligible amount of C—Cl bond cleavage.
摘要:
The present invention relates to a continuous process for preparing at least one aromatic amine by hydrogenation of at least one nitroaromatic by means of hydrogen, where a liquid phase comprising at least the aromatic amine and a gas phase comprising at least hydrogen are present, in the presence of a catalyst suspended in the liquid phase at a temperature of from 50 to 250° C. and a pressure of from 5 to 50 bar, wherein the pressure in the reactor is kept essentially constant by continuous adaptation of the amount of hydrogen fed to the reactor, the total amount of hydrogen fed to the reactor is monitored and the introduction of the at least one nitroaromatic is interrupted if the hydrogen uptake in the reactor is not at least 50 mol % of the amount of hydrogen required for stoichiometric reaction of the at least one nitroaromatic to form the at least one aromatic amine.
摘要:
Nitro-compounds are hydrogenated with an activated Ni catalyst that is doped during and/or after activation with one or more elements from the list of Mg, Ca, Ba, Ti, Zr, Ce, Nb, Cr, Mo, W, Mn, Re, Fe, Co, Ir, Ni, Cu, Ag, Au, Rh, Ru and Bi whereas the Ni/Al alloy may not, but preferentially can contain prior to activation one or more doping elements from the list of Ti, Ce, V, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Pd, Pt and Bi. If the Ni/Al alloy contained one or more of the above mentioned suitable alloy doping elements prior to activation, the resulting catalyst can then be doped with one or more of the elements from the list of Mg, Ca, Ba, Ti, Zr, Ce, V, Nb, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au and Bi by their adsorption onto the surface of the catalyst.