摘要:
A method for fabricating a photovoltaic device includes forming a patterned layer on a doped emitter portion of the photovoltaic device, the patterned layer including openings that expose areas of the doped emitter portion and growing an epitaxial layer over the patterned layer such that a crystalline phase grows in contact with the doped emitter portion and a non-crystalline phase grows in contact with the patterned layer. The non-crystalline phase is removed from the patterned layer. Conductive contacts are formed on the epitaxial layer in the openings to form a contact area for the photovoltaic device.
摘要:
A method for producing a compound semiconductor composed of pentanary kesterite/stannite of the type Cu2ZnSn(S,Se)4 is described. The method has the following steps: producing at least one precursor layer stack consisting of a first precursor layer and a second precursor layer; thermally treating the at least one precursor layer stack in a process chamber; and feeding at least one process gas into the process chamber during the thermal treatment of the at least one precursor layer stack. Furthermore, a thin-film solar cell with an absorber consisting of the pentanary compound semiconductor Cu2ZnSn(S,Se)4 on a body is described.
摘要:
A solar cell, a solar cell manufacturing device, and a method for manufacturing the solar cell are discussed. The solar cell manufacturing device includes a chamber; an ion implantation unit configured to implant ions into a substrate inside the chamber and a mask positioned between the ion implantation unit and the substrate. The mask includes a first opening to form a lightly doped region having a first concentration at one surface of the substrate, a second opening to form a heavily doped region having a second concentration higher than the first concentration at the one surface of the substrate, and at least one connector formed to cross the second opening. The second opening includes finger openings formed in a first direction, and bus openings formed in a second direction crossing the first direction.
摘要:
A solar cell is disclosed. The solar cell includes a p-type doped semiconductor material and an n-type doped semiconductor material laterally adjacent to the p-type material. The p-type material and n-type material form a stripped structure with finite depth, and form a vertically structured diode at the junction of the p-type material and n-type material. The vertically structured diode has its depth determined by a multiple of an electromagnetic skin depth of at least one of the p-type material or n-type material, and a width of a depletion layer is controlled by a doping concentration of the p-type and n-type material. A solar cell having a refractory material forming an optical element provided on a sun facing surface of the solar cell and adapted to direct photons to a depletion region of a vertically structured photodiode is also disclosed.
摘要:
A non-monocrystalline silicon semiconductor device having a pin junction is formed by forming a first doped semiconductor layer of a first conductivity disposed on a substrate. A first intrinsic layer is deposited on the first doped semiconductor layer employing RF energy. A second intrinsic layer is deposited on the first intrinsic layer employing microwave energy and RF energy simultaneously. A semiconductor precursor gas, including germanium and a semiconductor precursor gas including silicon are supplied to the second intrinsic layer during its formation. The content of the semiconductor precursor gas containing germanium is greater than the semiconductor gas including silicon in the layer thickness direction in the second intrinsic layer at a P-layer side. A second doped semiconductor layer is deposited on the second intrinsic layer.
摘要:
A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.
摘要翻译:多结(级联)串联光伏太阳能电池器件由在低电阻异质结处与GaAs底部单元半导体匹配的GaxIn1-xP(0.505≤X= 0.515)顶部单元半导体晶格制造,优选为p + / n +细胞之间的异质结。 顶部和底部电池都是晶格匹配和电流匹配,用于高效率太阳辐射转换成电能。
摘要:
A variable temperature method for the preparation of single and multiple taxial layers of single-phase (e.g., face-centered cubic), ternary lead chalcogenide alloys (e.g., lead cadmium sulfide [Pb.sub.1-w Cd.sub.w ].sub.a [S].sub.1-a wherein w varies between zero and fifteen hundredths, inclusive, and a=0.500.+-.0.003), deposited upon substrates of barium fluoride, BaF.sub.2, maintained in near thermodynamic equilibrium with concurrently sublimated lead alloy and chalcogenide sources. During preparation, the temperature of the substrate is varied, thereby providing an epilayer with graded composition and predetermined electrical and optical properties along the direction of growth. This growth technique can be used to produce infrared lenses, narrowband detectors, and double heterojunction lasers.
摘要:
A variable temperature method for the preparation of single and multiple taxial layers of single-phase (e.g., face-centered cubic), ternary lead chalcogenide alloys (e.g., lead cadmium sulfide, [Pb.sub.1-w Cd.sub.w ].sub.a [S].sub.1-a wherein w varies between zero and fifteen hundredths, inclusive, and a=0.500.+-.0.003), deposited upon substrates of barium fluoride, BaF.sub.2, maintained in near thermodynamic equilibrium with concurrently sublimated lead alloy and chalcogenide sources. During preparation, the temperature of the substrate is varied, thereby providing an epilayer with graded composition and predetermined electrical and optical properties along the direction of growth. This growth technique can be used to produce infrared lenses, narrowband detectors, and double heterojunction lasers.
摘要:
A photovoltaic cell that incorporates a PbO-SnO heterojunction of graded composition which, among other applications, can be utilized for the conversion of solar energy to electrical energy. A p-i-n junction is formed while PbO and SnO are simultaneously deposited on a substrate in a varying ratio that is either decreased or increased to form the compositions Pb.sub.1-x Sn.sub.x O where x varies in the range of 0 to 1.
摘要:
Embodiments of a photovoltaic device are provided herein. The photovoltaic device can include a layer stack and an absorber layer disposed on the layer stack. The absorber layer can include a first region and a second region. Each of the first region of the absorber layer and the second region of the absorber layer can include a compound comprising cadmium, selenium, and tellurium. An atomic concentration of selenium can vary across the absorber layer. The first region of the absorber layer can have a thickness between 100 nanometers to 3000 nanometers. The second region of the absorber layer can have a thickness between 100 nanometers to 3000 nanometers. A ratio of an average atomic concentration of selenium in the first region of the absorber layer to an average atomic concentration of selenium in the second region of the absorber layer can be greater than 10.