Abstract:
A split gate flash memory cell comprising a semiconductor substrate having a first insulating layer thereon and a floating gate with a first width is disclosed. The cell further comprises a second insulating layer, a control gate and a cap on the floating gate in sequence. The cap layer, the control gate and the second insulating layer have a same second width less than the first width. The cell also comprises a third insulating layer over the semiconductor substrate, the sidewalls of the control gate, the second insulating layer, the floating gate, and the first insulating layer. In addition, an erase gate formed on the third insulating layer is provided.
Abstract:
A power MOSFET structure comprises at least one first gate in the cell area and at least one second gate at the peripheral that are both in a semiconductor substrate. The first and second gates are electrically connected, and the second gate is connected to a contact so as to electrically connect to a bond pad for transmitting gate control signals. The semiconductor substrate comprises a first semiconductor layer, a second semiconductor layer and a third semiconductor layer in downward sequence. The first and third semiconductor layers are of a first conductive type, e.g., n-type, and the second semiconductor layer is of a second conductive type, e.g., p-type. The first and third semiconductor layers serve as the source and the drain, respectively.
Abstract:
A phase change memory device is provided. The phase change memory device comprises a substrate. A first conductive layer is formed on the substrate. A heating electrode is formed on the first conductive layer, and electrically connected to the first conductive layer, wherein the heating electrode comprises a carbon nanotube (CNT). A phase change material layer covers the heating electrode. A second conductive layer is formed on the phase change material layer, and electrically connected to the phase change material layer.
Abstract:
A semiconductor device structure includes a substrate, a first conductive layer over the substrate, a second conductive layer between the first conductive layer and the substrate and extending over the sidewalls of the first conductive layer, a dielectric layer between the second conductive layer and the substrate, a cap layer over the first conductive layer and the second conductive layer, and a liner layer on the sidewalls of the second conductive layer.
Abstract:
A phase-change memory element is provided. The phase-change memory element of an embodiment of the invention comprises a phase-change material layer with a concave, and a heater with an extended part, wherein the extended part of the heater is wedged in the concave of the phase-change material layer. Specifically, the extended part of the heater has a length of 10˜5000 Å.
Abstract:
A method for forming shallow trench isolation structures is provided. The method comprises the following steps: providing a substrate with a “v” shaped trench, forming a first dielectric layer to cover the upper portion of the inner wall of the trench; conducting the first etching process to pull back the uncovered inner wall of the trench; removing the first dielectric layer; and forming a second dielectric layer to cover the trench and form a void inside the trench.
Abstract:
A sensing circuit of a phase change memory. The sensing circuit comprises a data current source and a reference current source, a storage memory device and a reference memory device, a storage switch and a reference switch, an auxiliary current source and a comparator. First terminals of the storage memory device and the reference memory device are respectively coupled to the data current source and the reference current source. The storage switch and the reference switch are respectively coupled to second terminals of the storage memory device and the reference memory device. The auxiliary current source is dynamically coupled to the first terminals of the storage memory device and the reference memory device. The comparator is coupled to the first terminals of the storage memory device and the reference memory device.
Abstract:
Phase change memory devices and methods for manufacturing the same are provided. An exemplary embodiment of a phase change memory device includes a bottom electrode formed over a substrate. A first dielectric layer is formed over the bottom electrode. A heating electrode is formed in the first dielectric layer and partially protrudes over the first dielectric layer, wherein the heating electrode includes an intrinsic portion embedded within the first dielectric layer, a reduced portion stacked over the intrinsic portion, and an oxide spacer surrounding a sidewall of the reduced portion. A phase change material layer is formed over the first dielectric layer and covers the heating electrode, the phase change material layer contacts a top surface of the reduced portion of the heating electrode. A top electrode is formed over the phase change material layer and contacts the phase change material layer.
Abstract:
A vertical transistor comprises a substrate having a step structure, two doped regions positioned in the substrate at the two sides of the step structure, and a carrier channel positioned in the substrate between the two doped regions, wherein the step structure includes an inclined edge and the width of the carrier channel at the inclined edge is larger than the width of the doped regions. The step structure comprises two non-rectangular surfaces, such as the trapezoid or triangular surfaces, and a rectangular surface. The non-rectangular surfaces connect to the doped regions, and the rectangular surface is perpendicular to the non-rectangular surface.
Abstract:
A real-time system adapted to a PVD apparatus for monitoring and controlling film uniformity is described. The system includes a shielding plate, a monitoring device, and a data processing program. The shielding plate is disposed on an inner wall of a reaction chamber above a wafer stage. An opening in the center of the shielding plate exposes the wafer. The monitoring device including a scanner and a sensor respectively disposed on opposite sidewalls of the reaction chamber between the shielding plate and the wafer stage is used for measuring the flux of the particles on every portion of the wafer to acquire real-time uniformity data including a function of the wafer position and the flux. The data processing program compares the real-time uniformity data and reference uniformity data, and a feedback signal is outputted to the PVD apparatus to adjust the process parameter thereof for controlling film uniformity.