Abstract:
An extrusion die using a shock-absorbing pad and a method for manufacturing an extrusion. A shock-absorbing pad is inserted between a material to be processed and a die such that the shock-absorbing pad is deformed during extrusion to form an optimal die half angle, thereby efficiently extruding the material to be processed. The extrusion die for extruding the material to be processed includes a container for accommodating a material to be processed, a die which is mounted on the front of the container, and which has, in the center thereof, a die hole that is a path through which the material to be processed is extruded, a shock-absorbing pad inserted between the material to be processed and the die, and a ram for pressing the material to be processed.
Abstract:
One embodiment of the present invention relates to a method of manufacturing polycrystalline silicon thin-film solar cell by a method of crystallizing a large-area amorphous silicon thin film using a linear electron beam, and the technical problem to be solved is to crystallize an amorphous silicon thin film, which is formed on a low-priced substrate, by means of an electron beam so as for same to easily be of high quality by having high crystallization yield and to be processed at a low temperature. To this end, one embodiment of the present invention provides a method of manufacturing polycrystalline silicon thin-film solar cell by means of a method for crystallizing a large-area amorphous silicon thin film using a linear electron beam, the method comprising: a substrate preparation step for preparing a substrate; a type 1+ amorphous silicon layer deposition step for forming a type 1+ amorphous silicon layer on the substrate; a type 1 amorphous silicon layer deposition step for forming a type 1 amorphous silicon layer on the type 1+ amorphous silicon layer; an absorption layer formation step for forming an absorption layer by radiating a linear electron beam to the type 1 amorphous silicon layer and thus crystallizing the type 1 amorphous layer and the type 1+ amorphous silicon layer; a type 2 amorphous silicon layer deposition step for forming a type 2 amorphous silicon layer on the absorption layer; and an emitter layer formation step for forming an emitter layer by radiating a linear electron beam to the type 2 amorphous silicon layer and thus crystallizing the type 2 amorphous silicon layer, wherein the linear electron beam is radiated from above type 1 and type 2 amorphous silicon layers in a linear scanning manner in which to reciprocate in a predetermined area.
Abstract:
The present disclosure relates to a docking station whereby an underwater robot can be maintained, repaired and managed all the time. According to one aspect of the present disclosure, a docking station can be provided that may comprise: a receiving unit configured to receive an underwater robot therein and positioned under a surface of water; a maintenance unit provided on the receiving unit and positioned above the surface of the water; and a conveyor unit configured to convey the underwater robot from the receiving unit to the maintenance unit.
Abstract:
Provided are an alkoxysilylated epoxy compound, a composite of which exhibits good heat resistance properties, particularly low CTE and increased glass transition temperature, and a cured product thereof exhibits good flame retardancy and composition of which does not require additional silane coupling agent, a method for preparing the same and a composition and a cured product including the same. An alkoxysilylated epoxy compound including at least one alkoxysilyl group and at least two epoxy groups, a method for preparing the same by epoxide ring-opening reaction of starting material and alkoxysilylation, an epoxy composition including the epoxy compound, and a cured product and a use of the composition are provided. Since chemical bonds may be formed between alkoxysilyl group and filler and between alkoxysilyl groups, chemical bonding efficiency of the composite may be improved. Thus, the composite exhibits good heat resistance properties and the cured product exhibits good flame retardancy.
Abstract:
A robot for rehabilitation therapy includes a robot body and a walker. The robot body includes a fixing band for supporting a waist of a patient, pelvic joint shafts rotatably connected to the fixing band, first arms extending downward from the pelvic joint shafts, first connecting joint shafts connected to the first arm, second arms extending downward from the first connecting joint shafts, second connecting joint shafts rotatably connected to the second arms, extension pieces extending downward from the second connecting joint shafts, and footboards rotatably connected to the extension pieces by ankle joint shafts. The walker includes an upper frame, a connection frame, and a wheeled lower frame. The angles of the first arms and the second arms are adjusted according to the length of the lower half of the body of the patient.
Abstract:
A method for treating water using a salt desorption process of gas hydrates according to the present invention includes: (a) introducing water containing impurities and a plurality of guest gases into a reactor; (b) forming gas hydrates by causing the water and the plurality of guest gases to react under a first condition; and (c) dissociating a gas hydrate of one guest gas from among the plurality of guest gases by changing the first condition to a second condition, wherein the first condition refers to temperature and pressure conditions under which all of the plurality of guest gases form gas hydrates and the second condition refers to temperature and pressure conditions under which the gas hydrate of the one guest gas from the mixed gas hydrates is dissociated.The method according to the present invention can remove impurities such as salts that are mixed into the gas hydrates by sequentially dissociating the plurality of guest gases through a process of causing the water and the plurality of guest gases introduced into the reactor to react to prepare the gas hydrates and lowering the pressure of phase change.
Abstract:
Provided are a resistance spot welding electrode including a projection protruding from an opposing surface that faces a base metal, surrounding a center of the opposing surface, and including a round-shaped end that is capable of contacting the base metal, in order to expand a welding area, minimize expulsion, and significantly increase weld strength, and a resistance spot welding method using the same.
Abstract:
Disclosed, herein is a deburring device for removing burrs generated on a joint between window frames. The deburring device includes: first and second scrapers (111) and (112) provided on an end of a scraper rod that is moved back and forth toward the joint; first scraper-guide bars (111) and second scraper-guide bars (112) assembled with left and right side surfaces of the first and second scrapers supports (131) and (132) respectively assembled with corresponding left and right outer surfaces of the scraper-guide bars; and push bar (141) and (142) provide to vary a distance between the first and second scrapers. Each push bar includes: on a front end thereof a contact member making contact with corresponding-upper and lower contact rollers provided on the first and second scraper-guide bars; and a guide member moving back and forth along a guide depression formed in the corresponding support.
Abstract:
A dye-sensitized solar cell and a method for manufacturing same are disclosed. The dye-sensitized solar cell includes: a transparent substrate; a working electrode including a dye-adsorbed metallic oxide disposed on the transparent substrate; a separation film disposed on the working electrode; an electrolyte disposed on the separation film; and an opposite electrode disposed on the electrolyte. A carbon nano-web coated with graphene is disposed between the working electrode and the separation film.
Abstract:
The present invention includes a first injection tube for supplying a colloidal medium, a storage part connected to the first injection tube for receiving the colloidal medium through the first injection tube, a second injection tube connected to the storage part for supplying a colloid, a discharge tube connected to both the storage part and the second injection tube for discharging the colloidal medium coming from the storage part and the colloid coming from the second injection tube, and a free surface inversion part for inverting the free surface of the liquid in the second injection tube so as to mix the colloidal medium and the colloid in the discharge tube.