Abstract:
Provided is a stacked semiconductor device including n stacked chips. Each chip includes “j” corresponding upper and lower electrodes, wherein j is a minimal natural number greater than or equal to n/2, and an identification code generator including a single inverter connecting one of the j first upper electrode to a corresponding one of the j lower electrodes. The upper electrodes receive a previous identification code, rotate the previous identification code by a unit of 1 bit, and invert 1 bit of the rotated previous identification code to generate a current identification code. The current identification code is applied through the j lower electrodes and corresponding TSVs to communicate the current identification code to the upper adjacent chip.
Abstract:
An apparatus and method for detecting a target flow in a wireless communication system are provided. The target flow detection method includes receiving a packet, determining a behavior state of the packet, comparing the behavior state with a plurality of stored behavior signatures, retrieving, when the behavior state matches one of the stored behavior signatures, a target flow corresponding to the behavior signature, and instructing a packet processor to process the target flow.
Abstract:
Provided is a stacked semiconductor device including n stacked chips. Each chip includes “j” corresponding upper and lower electrodes, wherein j is a minimal natural number greater than or equal to n/2, and an identification code generator including a single inverter connecting one of the j first upper electrode to a corresponding one of the j lower electrodes. The upper electrodes receive a previous identification code, rotate the previous identification code by a unit of 1 bit, and invert 1 bit of the rotated previous identification code to generate a current identification code. The current identification code is applied through the j lower electrodes and corresponding TSVs to communicate the current identification code to the upper adjacent chip.
Abstract:
A semiconductor memory device includes a semiconductor die and an input-output bump pad part. The semiconductor die includes a plurality of memory cell arrays. The input-output bump pad part is formed in a central region of the semiconductor die. The input-output bump pad part provides a plurality of channels for connecting each of the memory cell arrays independently to an external device. The semiconductor memory device may adopt the multi-channel interface, thereby having high performance with relatively low power consumption.
Abstract:
A semiconductor device is provided. The semiconductor device applies data applied through a bump pad on which a bump is mounted through a test pad to a test apparatus such that the reliability of the test can be improved. The amount of test pads is significantly reduced by allowing data output through bump pads to be selectively applied to a test pad. Data and signals applied from test pads are synchronized with each other and applied to bump pads during a test operation such that the reliability of the test can be improved without the need of an additional test chip.
Abstract:
An internal power generating system for a semiconductor device is disclosed. The device may include a plurality of channels. The system comprises a reference voltage generator configured to generate a reference voltage. The system further comprises a plurality of internal power generators that are allocated to the plurality of channels in one-to-one correspondence and that are configured to commonly use the reference voltage generated by the reference voltage generator. Each internal power generator may be configured to receive a fed back internal power voltage, to compare the fed back internal power voltage to the reference voltage, and to generate an internal power voltage based on the comparison. The system further comprises a plurality of channel state detectors that are allocated to the plurality of channels in one-to-one correspondence, and that are configured to respectively detect operation states of the plurality of channels based on separate respective sets of command signals for each channel. The system additional comprises a plurality of internal power controllers that are allocated to the plurality of channels in one-to-one correspondence, and that are configured to respectively control driving capabilities for the internal power voltages according to the detected operation states.
Abstract:
A multiprocessor system and method thereof are provided. The example multiprocessor system may include first and second processors, a dynamic random access memory having a memory cell array, the memory cell array including a first memory bank coupled to the first processor through a first port, second and fourth memory banks coupled to the second processor through a second port, and a third memory bank shared and connected with the first and second processors through the first and second ports, and a bank address assigning unit for assigning bank addresses to select individually the first and second memory banks, as the same bank address through the first and second ports, so that starting addresses for the first and second memory banks become equal in booting, and assigning bank addresses to select the third memory bank, as different bank addresses through the first and second ports, and assigning, through the second port, bank addresses to select the fourth memory bank, as the same bank address as a bank address to select the third memory bank through the first port.
Abstract:
An auto-precharge control circuit in a semiconductor memory and method thereof, where the auto-precharge starting point may vary. The auto-precharge starting point may vary in response to at least one control signal. The auto-precharge starting point may vary in accordance with frequency and/or latency information. The auto-precharge starting point may vary in response to at least one control signal including clock frequency information. The auto-precharge starting point may vary depending on a latency signal received from a mode register setting command. The auto-precharge control circuit may include a control circuit for receiving a write signal, a clock signal and at least one control signal, including at least one of clock frequency information and latency information, and outputting at least one path signal; an auto-precharge pulse signal driver for receiving the at least one path signal, the write signal, and an enable signal and producing an auto-precharge pulse signal, the auto-precharge pulse signal identifying a starting point for an auto-precharge operation; and an auto-precharge mode enabling circuit for receiving the clock signal, an auto-precharge command, an active signal, and the auto-precharge pulse signal and generating the enable signal.
Abstract:
A multipath accessible semiconductor memory device provides an interface function between processors. The memory device may include a memory cell array having a shared memory area operationally coupled to two or more ports that are independently accessible by two or more processors, an access path forming unit to form a data access path between one of the ports and the shared memory area in response to external signals applied by the processors, and an interface unit having a semaphore area and mailbox areas accessible in the shared memory area by the two or more processors to provide an interface function for communication between the two or more processors.
Abstract:
A semiconductor memory device includes ports, data line pairs, where each port associated with one of the data line pairs, sets of address lines, where each port associated with one of the sets of address lines, a shared memory region of a memory cell array, where the shared memory region accessible through the ports, an access controller coupled to the ports and configured to generate an access selection signal in response to a plurality of control signals received through the ports, and an access router coupled to the shared memory region, the data line pairs, and the sets of address lines, the access router configured to selectively couple one of the sets of address lines and one of the data line pairs to the shared memory region in response to the access selection signal.