Abstract:
An exhaust gas processing method may include desulfurizing a catalyst by raising temperature of the catalyst to a predetermined value, if the front/end temperature difference ΔT is less than a predetermined temperature difference X, while reducing agent is being injected, determining whether travel distance, fuel consumption amount, or travel time exceeds a first reference value, after the desulfurization, determining whether fuel is replenished by detecting the fuel amount, and determining whether a high sulfur fuel is refueled or not, if the first reference value does not exceed a predetermined value, the fuel is replenished, and the temperature difference (ΔT) is less than the predetermined temperature difference (X) during injection of the reducing agent. Accordingly, while the nitrogen oxide purification mode is being performed so as to eliminate the nitrogen oxide, the desulfurization control is performed according to a temperature difference between the front and the rear of the catalyst, and if the abnormal desulfurization control is repeatedly performed, it is determined that the high sulfur fuel is replenished. Further, this method has the vehicle driver effectively determine whether the high sulfur fuel is replenished or not and guide the vehicle driver not to replenish the high sulfur fuel some other time.
Abstract:
An exhaust purification system for an internal combustion engine, and a desulfurization method for the same, recovers purification performance of a denitrification catalyst by removing sulfur poisoned at the denitrification catalyst in an exhaust system. The exhaust purification system may include an exhaust pipe through which an exhaust gas flows, the exhaust gas being generated at the internal combustion engine having a first injector injecting a fuel to a combustion chamber, a second injector mounted at the exhaust pipe and additionally injecting the fuel, a particulate filter mounted at the exhaust pipe downstream of the second injector and filtering particulate matters (PM) in the exhaust gas, a denitrification catalyst mounted at the exhaust pipe downstream of the particulate filter and reducing nitrogen oxide contained in the exhaust gas, and a control portion performing desulfurization of the denitrification catalyst when a desulfurization entering condition and a desulfurization condition are satisfied during regenerating the particulate filter.
Abstract:
An exhaust system, may include an exhaust line through which exhaust gas passes, a nitrogen oxide purification catalyst that is mounted on the exhaust line to reduce nitrogen oxide of the exhaust gas, an injector that is mounted at an upstream side of the nitrogen oxide purification catalyst to additionally inject fuel such that nitrogen oxide that is trapped in the nitrogen oxide purification catalyst is detached to be reduced thereby, and a control portion that varies an injection pattern of the injector if it is determined that a purification rate of the nitrogen oxide purification catalyst is higher than a first predetermined value.
Abstract:
The present invention is related to new 2-oxo-cyclic compound the process for preparing them and a pharmaceutical composition comprising the same. The present invention provides a pharmaceutical composition for preventing and treating the inflammatory disease comprising the pain or inflammation caused by rheumatic disease, for example, rheumatoid arthritis, spondyloarthopathies, gout, osteoarthritis, systemic lupus erythematosus and juvenile arthritis, and inflammatory syndrome for example, from myositis, gingivitis, synovitis, ankylosing spondylitis, burstitis, burns and scar, inflammatory Crohn's disease, Types I diabetes. therefore, it can be used as the therapeutics for treating and preventing inflammatory diseases.
Abstract:
The present invention is related to novel use of 2-oxo-heterocyclic compounds having anticancer activity and the process for preparing them and a pharmaceutical composition comprising the same. The present invention provides a pharmaceutical composition for preventing and treating the cancer disease comprising lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head and neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer or cancer of the anal region, stomach cancer, colon cancer, breast cancer, gynecologic tumors, Hodgkin's disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, sarcomas of soft tissues, cancer of the urethra, cancer of the penis, prostate cancer, chronic or acute leukemia, solid tumors of childhood, lymphocytic lymphonas, cancer of the bladder, cancer of the kidney or ureter, or neoplasms of the central nervous system, therefore, it can be used as the therapeutics for treating and preventing cancer diseases.
Abstract:
A system for purifying an exhaust gas and an exhaust system having the same while preventing degradation of a selective reduction catalyst may include an exhaust pipe connected to an engine, the exhaust gas generated at the engine passing through the exhaust pipe, a particulate filter mounted on the exhaust pipe, coated with a selective reduction catalyst adapted to reduce nitrogen oxides contained in the exhaust gas by an injection of a reducing agent, and adapted to trap particulate matters contained in the exhaust gas, and one or more injectors adapted to inject the reducing agent and/or oxygen storage capacity material together or separately into the exhaust gas passing through the exhaust pipe.
Abstract:
A method for predicting a NOx amount may include detecting an O2 amount in an intake air, calculating a reference O2 amount in the intake air according to a driving condition of an engine, calculating a reference NOx amount contained in an exhaust gas according to the driving condition of the engine, and primarily correcting the reference NOx amount based on the detected O2 amount in the intake air and the reference O2 amount in the intake air according to the driving condition of the engine.
Abstract:
A desulfurization method of a nitrogen oxide absorption catalyst when diesel is used may include determining how many times a regeneration of a diesel particulate filter (DPF) is completed, ending a DPF regeneration, if the number of times of the DPF regeneration reaches a predetermined value and entering into a desulfurization mode to desulfurize the DPF, ending the desulfurization mode after the desulfurization mode is performed for a predetermined time, and calculating a particulate matters (PM) amount that is trapped in the DPF after the desulfurization, compensating the trapped PM amount, and determining a time of the DPF regeneration. A desulfurization timing is determined based on the number of times that the DPF is regenerated to be able to simplify the desulfurization logic and also reduce the memory of ECU, when the LNT catalyst is poisoned by a small amount of sulfur included in exhaust gas.
Abstract:
A catalyst for diesel particle filter includes a platinum (Pt)-neodymium (Nd) alloy that is carried in silica, a preparation method thereof and a soot reduction device for diesel engine including the same, wherein the catalyst for diesel particle filter can maintain high catalyst activity and implement high nitrogen monoxide (NO) conversion efficiency even though it is used under the high temperature or vulcanization condition for a long time.
Abstract:
An exhaust gas purification device may deactivate at least one of cylinders to supply a gasoline particulate filter with sufficient air according to a driving condition of a gasoline engine, and a control method thereof and a control method thereof may include comparing a pressure difference of the gasoline particulate filter with a predetermined value, determining a cylinder that may be to be deactivated when the pressure difference may be larger than the predetermined value, regenerating the gasoline particulate filter by supplying it with air through the deactivated cylinder, determining whether the engine may be in an over-run condition during the regeneration process, and returning to a general driving condition in a case that the engine may be in the over-run condition.