Abstract:
A semiconductor device includes a dielectric layer in which zirconium, hafnium, and a IV group element are mixed. A method for fabricating a capacitor includes forming a bottom electrode, forming the dielectric layer and forming a top electrode over the dielectric layer.
Abstract:
A non-volatile memory device includes a plurality of memory cells stacked along a channel protruded from a substrate, a first select transistor connected to one end of the plurality of memory cells, a first interlayer dielectric layer for being coupled between a source line and the first select transistor, and a second interlayer dielectric layer disposed between the first select transistor and the one end of the plurality of memory cells, and configured to include a first recess region.
Abstract:
A vertical light-emitting device includes: a substrate; a first electrode disposed on a bottom surface of the substrate; a reflection layer disposed on a top surface of the substrate; a current spreading layer disposed on the reflection layer and comprising a groove having a width narrower toward a top portion thereof; a light generation layer disposed on the current spreading layer; and a second electrode disposed on the light generation layer.
Abstract:
A method and apparatus for estimating a geo-location of a terminal in a wireless communication system are provided. In a method of operating a terminal for providing geo-location information in a cognitive ratio (CR) system, the method includes obtaining first ranging information and transmitting a first ranging code to a base station (BS) in a network entry process; receiving an allocated second ranging resource from the BS; and transmitting a second ranging code.
Abstract:
Provided is a method for forming a dielectric film in a semiconductor device, wherein the method can improve a dielectric characteristic and a leakage current characteristic. According to specific embodiments of the present invention, the method for forming a dielectric film includes: forming a zirconium dioxide (ZrO2) layer over a wafer in a predetermined thickness that does not allow continuous formation of the ZrO2 layer; and forming an aluminum oxide (Al2O3) layer over portions of the wafer where the ZrO2 layer is not formed, in a predetermined thickness that does not allow continuous formation of the Al2O3 layer.
Abstract translation:提供一种在半导体器件中形成电介质膜的方法,其中该方法可以改善介电特性和漏电流特性。 根据本发明的具体实施方案,形成电介质膜的方法包括:在不允许连续形成ZrO 2层的预定厚度的晶片上形成二氧化锆(ZrO 2)层; 并且在没有形成ZrO 2层的晶片的部分上形成氧化铝(Al 2 O 3)层,其厚度不能连续地形成Al 2 O 3层。
Abstract:
A frequency overlay communication system that includes a first communication system for performing communication using a first frequency band being a preset bandwidth; and a second communication system for performing communication using a second frequency band being a second preset bandwidth, wherein the second frequency band includes the first frequency band.
Abstract:
Provided is a method of fabricating a non-volatile semiconductor device. The method includes: forming a first hard mask layer over a substrate; etching the first hard mask layer and the substrate to form a plurality of isolation trenches extending in parallel to one another in a first direction; burying a dielectric layer in the isolation trenches to form a isolation layer; forming a plurality of floating gate mask patterns extending in parallel to one another in a second direction intersecting with the first direction over a resulting structure where the isolation layer is formed; etching the first hard mask layer by using the floating gate mask patterns as an etch barrier to form a plurality of island-shaped floating gate electrode trenches; and burying a conductive layer in the floating gate electrode trenches to form a plurality of island-shaped floating gate electrodes.
Abstract:
A non-volatile memory device has a gate dielectric film formed between a floating gate and a control gate. The gate dielectric film is formed by forming an oxide film and a ZrO2/Al2O3/ZrO2 (ZAZ) film. Accordingly, the reliability of non-volatile memory devices can be improved while securing a high coupling ratio.
Abstract translation:非易失性存储器件具有形成在浮置栅极和控制栅极之间的栅极电介质膜。 通过形成氧化膜和ZrO 2 / Al 2 O 3 / ZrO 2(ZAZ)膜来形成栅极电介质膜。 因此,可以在确保高耦合比的同时提高非易失性存储器件的可靠性。
Abstract:
The present invention relates to a method of fabricating a flash memory device. According to a method of fabricating a flash memory device in accordance with an aspect of the present invention, a semiconductor substrate over which a tunnel insulating layer and a first conductive layer are formed is provided. A first oxide layer is formed on the first conductive layer using a plasma oxidization process in a state where a back bias voltage is applied. A nitride layer is formed on the first oxide layer. A second oxide layer is formed on the nitride layer. A second conductive layer is formed on the second oxide layer.
Abstract:
A rate matching method is provided for a mobile communication system that performs an adjustment to a code rate based on an optimal level by puncturing or repetition to respective bit streams of transport channels. The rate matching method is preferably applicable to uplink and downlink rate matching for channel coding including turbo coding, convolutional coding and the like. The rate matching method for uplink can include executing coding for bits of a transport channel, and branching off the bits into a plurality of sequences, constructing a first interleaving pattern for the plurality of sequences, constructing a virtual interleaving pattern for at least one sequence based on a mapping rule with a corresponding first interleaving pattern and calculating different bit shifting values in each column of each virtual interleaving pattern. Then, a bit position to be punctured is determined in each constructed virtual interleaving pattern using the calculated bit shifting values.