Abstract:
A multi-state current-switching magnetic memory element includes a stack of magnetic tunneling junction (MTJ) separated by a non-magnetic layer for storing more than one bit of information, wherein different levels of current applied to the memory element cause switching to different states.
Abstract:
Systems having a host computer system, a memory device coupled to the host computer system, and identification circuitry. The identification circuitry is configured to identify an operating mode of the host computer system from comparing applied signals to sensed signals.
Abstract:
Systems having a host computer system, a memory device coupled to the host computer system, and identification circuitry. The identification circuitry is configured to identify an operating mode of the host computer system from comparing applied signals to sensed signals.
Abstract:
A non-uniform switching based non-volatile magnetic memory element includes a fixed layer, a barrier layer formed on top of the fixed layer, a first free layer formed on top of the barrier layer, a non-uniform switching layer (NSL) formed on top of the first free layer, and a second free layer formed on top of the non-uniform switching layer. Switching current is applied, in a direction that is substantially perpendicular to the fixed layer, barrier layer, first free layer, non-uniform switching layer and the second free layer causing switching between states of the first free layer, second free layer and non-uniform switching layer with substantially reduced switching current.
Abstract:
A flash-RAM memory includes non-volatile random access memory (RAM) formed on a monolithic die and non-volatile page-mode memory formed on top of the non-volatile RAM, the non-volatile page-mode memory and the non-volatile RAM reside on the monolithic die.
Abstract:
A nonvolatile semiconductor mass storage system and architecture can be substituted for a rotating hard disk. The system and architecture avoid an erase cycle each time information stored in the mass storage is changed. Erase cycles are avoided by programming an altered data file into an empty mass storage block rather than over itself as a hard disk would. Periodically, the mass storage will need to be cleaned up. These advantages are achieved through the use of several flags, and a map to correlate a logical block address of a block to a physical address of that block. In particular, flags are provided for defective blocks, used blocks, and old versions of a block. An array of volatile memory is addressable according to the logical address and stores the physical address.
Abstract:
A nonvolatile semiconductor mass storage system and architecture can be substituted for a rotating hard disk. The system and architecture avoid an erase cycle each time information stored in the mass storage is changed. Erase cycles are avoided by programming an altered data file into an empty mass storage block rather than over itself as a hard disk would. Periodically, the mass storage will need to be cleaned up. These advantages are achieved through the use of several flags, and a map to correlate a logical block address of a block to a physical address of that block. In particular, flags are provided for defective blocks, used blocks, and old versions of a block. An array of volatile memory is addressable according to the logical address and stores the physical address.
Abstract:
An interfacing system facilitating user-friendly connectivity in a selected operating mode between a host computer system and a flash memory card. The interfacing system includes an interface device and a flash memory card. The interfacing system features significantly expanded operating mode detection capability within the flash memory card and marked reduction in the incorrect detection of the operating mode. The interface device includes a first end for coupling to the host computer and a second end for coupling to the flash memory card, while supporting communication in the selected operating mode which is also supported by the host computer system. The flash memory card utilizes a fifty pin connection to interface with the host computer system through the interface device. The fifty pin connection of the flash memory card can be used with different interface devices in a variety of configurations such as a universal serial mode, PCMCIA mode, and ATA IDE mode. Each of these modes of operation require different protocols. Upon initialization with the interface device, the flash memory card automatically detects the selected operating mode of the interface device and configures itself to operate with the selected operating mode. The operating mode detection is accomplished by sensing unencoded signals and encoded signals. The encoded signals are encoded with a finite set of predetermined codes. Each predetermined code uniquely identifies a particular operating mode.
Abstract:
An embodiment of the present invention is disclosed to include a nonvolatile memory system for controlling erase operations performed on a nonvolatile memory array comprised of rows and columns, the nonvolatile memory array stores digital information organized into blocks with each block having one or more sectors of information and each sector having a user data field and an extension field and each sector stored within a row of the memory array. A controller circuit is coupled to a host circuit and is operative to perform erase operations on the nonvolatile memory array, the controller circuit erases an identified sector of information having a particular user data field and a particular extension field wherein the particular user field and the particular extension field are caused to be erased separately.
Abstract:
An output circuit for producing 5 volt output signals from a chip that is manufactured in a 3 volt process, is provided with a control signal logic circuit, a pseudoground generating circuit, and an output signal generation circuit. The control signal logic circuit receives 3 volt data signals from the internal logic circuitry of the chip, and produces control signals as a function of these 3 volt data signals. The pseudoground generating circuit is coupled to the control signal logic circuit and generates a pseudoground greater than zero volts and intermediate output signals as a function of the control signals produced by the control signal logic circuit. The output signal generation circuit is coupled to the pseudoground generating circuit and generates the 5 volt output signals as a function of the intermediate output signals generated by the pseudoground generating circuit. As a result of the creation of the pseudoground, the voltage differential to which the semiconductor devices in the output circuit are subjected is always less than 5 volts. This prevents the rapid degradation of the oxide layer in the semiconductor devices of the output circuit, allowing the 3 volt process chip to interface with 5 volt process devices without premature failure of the chip.