Abstract:
The present disclosure relates to thermoplastic compositions. The disclosed compositions comprise a polycarbonate polymer, a polysiloxane-polycarbonate copolymer, a laser direct structuring additive, and a siloxane additive. Also disclosed are methods for making the disclosed thermoplastic compositions and articles of manufacture comprising the disclosed thermoplastic compositions.
Abstract:
Blends of a polyphenylene sulfone (PPSU); a polyphenylene sulfide (PPS); and, a polyetherimide and epoxy. The polyetherimide and epoxy are present in an amount effective to act as a compatibilizer for the polyphenylene sulfone (PPSU) and polyphenylene sulfide (PPS). Methods of compatibilizing a blend of polyphenylene sulfone (PPSU) and polyphenylene sulfide (PPS). The method can include melt mixing a polyphenylene sulfone (PPSU) and a polyetherimide; and melt mixing a polyphenylene sulfide (PPS) and an epoxy.
Abstract:
The disclosure relates, in one aspect, to porous solid-state films with controlled pore structures obtained by laser perforation. A thin laser-perforated film can comprise a slab defining a plurality of pores distributed in a predetermined arrangement, the plurality of pores having a distribution of sizes bound by a predetermined magnitude. In an aspect, the plurality of pores are formed in the slab with a laser having a wavelength less than about 400 nm and the slab has a transmission of the laser light of equal to or less than about 70% measured at a thickness of the slab of 100 micrometer or less.
Abstract:
The present disclosure relates to thermoplastic compositions, methods of making thermoplastic compositions, and articles made from thermoplastic compositions. The disclosed compositions comprise a polycarbonate polymer and a triacylglyceride release agent. In an embodiment, a thermoplastic composition comprising: a melt polycarbonate polymer; and 0.01 to 0.05 weight percent of a release agent based on the total weight of the composition, wherein the release agent comprises triacylglyceride, and wherein the composition is free of stearyl stearate, glycerol monostearate, and pentaerythrityl tetrastearate.
Abstract:
A composition useful for molding electrical components is prepared by melt blending specific amounts of components including a polyamide, a poly(phenylene ether)-polysiloxane block copolymer reaction product including a poly(phenylene ether) and a poly(phenylene ether)-polysiloxane block copolymer, a flame retardant including a metal dialkylphosphinate, melamine polyphosphate, and zinc borate, and glass fibers. The use of a poly(phenylene ether)-polysiloxane block copolymer reaction product rather than a poly(phenylene ether) alone provides improved surface resistivity without sacrificing flame retardancy.
Abstract:
Disclosed herein are methods and compositions of polycarbonate blends having, among other characteristics, improved heat resistance. The resulting polycarbonate blends, comprising a first polycarbonate comprising structural repeating units derived from bisphenol acetophenone and optionally a second polycarbonate polymer comprising structural repeating units derived from bisphenol A, can be used in the manufacture of articles while still retaining the advantageous physical properties of blended polycarbonate compositions with improved heat resistance. The disclosed polycarbonate blends optionally comprise one or more polycarbonate blend additives. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Abstract:
A thermoplastic composition comprises: a compatibilized blend of a poly(arylene ether), an aliphatic-aromatic polyamide and a polymeric compatibilizer; and an impact modifier; wherein the aliphatic-aromatic polyamide is composed of units derived from a dicarboxylic acid and units derived from a diamine and the units derived from a dicarboxylic acid comprise 60 to 100 mol % of units derived from terephthalic acid and the units derived from a diamine comprise 60 to 100 mol % of units derived from 1,9-nonanediamine, 2-methyl-1,8-octanediamine, or a combination of 1,9-nonanediamine and 2-methyl-1,8-octanediamine.
Abstract:
Disclosed herein is a composition comprising a polyphenylene ether sulfone and a resorcinol based silicone aryl polyester carbonate copolymer wherein greater than or equal to 50 mol % of copolymer repeating units are ester units derived from resorcinol, based on the total molar amount of all repeating units in the polymer and wherein the blend has less than 1 weight percent polycarbonate, based on the total weight of the composition, has FAR 25.853 peak heat release of less than 60 KW/m2 and time to peak heat release of greater than or equal to 120 seconds.
Abstract translation:本文公开了包含聚苯醚砜和间苯二酚基硅酮芳基聚酯碳酸酯共聚物的组合物,其中大于或等于50摩尔%的共聚物重复单元是源自间苯二酚的酯单元,基于所有重复单元的总摩尔量 聚合物,其中共混物具有小于1重量%的聚碳酸酯,基于组合物的总重量,具有小于60KW / m 2的FAR 25.853峰值热释放和大于或等于120秒的时间到峰值热释放 。
Abstract:
Disclosed is a process for the manufacture of a polyalkylene terephthalate such as polybutylene terephthalate. In particular, the process comprises employing a titanium-containing catalyst formed by the reaction product of tctraalkyl titanate and a complexing agent comprising a phosphorous, nitrogen or boron atom. The process is used to prepare polyalkylene terephthalates characterized by improved hydrostability, as well as compositions derived therefrom.
Abstract:
Compositions and methods for producing compositions comprising a monoamine-endcapped polyimide component. Based on a gas chromatography mass spectroscopy analysis of a surface rinse of the composition performed at room temperature, the composition can have at least one surface with less than or equal to 5 ppb releasable phosphorous residuals, and less than or equal to 5 ppb releasable volatile organic compound residuals. The composition can also comprise less than or equal to 10 ppb combined releasable residuals. Because of the very low levels of residual contamination, the compositions can be used to produce a variety of articles including a disk drive.