Abstract:
An endoprosthesis such as a coronary stent includes a polymeric reservoir of drug and an over coating formed of ceramic or metal for controlling elution of drag from the reservoir.
Abstract:
A stent is adapted to be implanted in a duct of a human body to maintain an open lumen at the implant site, and to allow viewing body tissue and fluids by magnetic resonance imaging (MRI) energy applied external to the body. The stent constitutes a metal scaffold. An electrical circuit resonant at the resonance frequency of the MRI energy is fabricated integral with the scaffold structure of the stent to promote viewing body properties within the lumen of the stent.
Abstract:
An endoprosthesis such as a coronary stent includes a luminal surface, at least a portion of which is covered with a first coating including a first drug, and an abluminal surface, at least a portion of which is covered with a second coating including a second drug. The first drug has a first eluting profile based on the first coating, and the second drug has a second eluting profile based on the second coating, the first eluting profile being different from the second eluting profile. Methods of making the same are also provided.
Abstract:
A stent is adapted to be implanted in a duct of a human body to maintain an open lumen at the implant site, and to allow viewing body tissue and fluids by magnetic resonance imaging (MRI) energy applied external to the body. The stent constitutes a metal scaffold. An electrical circuit resonant at the resonance frequency of the MRI energy is fabricated integral with the scaffold structure of the stent to promote viewing body properties within the lumen of the stent.
Abstract:
In various aspects, the present invention relates to implantable or insertable medical devices which release therapeutic agent into the body of a patient.
Abstract:
Medical devices having a plurality of nanoparticles disposed over a surface of the medical device. The nanoparticles have a core comprising a therapeutic agent and a shell surrounding the core, wherein the shell comprises a metal. A barrier layer is disposed over the nanoparticles. The barrier layer is water-permeable and comprises a metal that may be different from the metal used in the nanoparticle shells. In certain embodiments, the metal in the barrier layer undergoes galvanic corrosion. Also disclosed are medical device having a reservoir containing a therapeutic agent, with nanoparticles and a barrier layer being disposed over the reservoir; and medical devices having multiple barrier layers and multiple reservoirs containing therapeutic agents.
Abstract:
An endoprosthesis such as a coronary stent includes a porous reservoir of drug, e.g., a porous layer formed of a ceramic and an overlayer formed of ceramic or metal for controlling elution of drug from the reservoir.
Abstract:
Apparatuses for identifying nerve tissue and methods for making and using the same are disclosed. An example apparatus may include an elongate shaft having a distal region configured to be percutaneously deployed within a patient. An active imaging structure may be disposed on the distal region. The active imaging structure may be configured to remotely image nerve tissue by exciting a signal in nerve tissue from a percutaneous location and receiving the signal from a percutaneous location. The active imaging structure may include one or more probes.
Abstract:
Apparatuses for identifying nerve tissue and methods for making and using the same are disclosed. An example apparatus may include an elongate shaft having a distal region configured to be percutaneously deployed within a patient. An active imaging structure may be disposed on the distal region. The active imaging structure may be configured to remotely image nerve tissue by exciting a signal in nerve tissue from a percutaneous location and receiving the signal from a percutaneous location. The active imaging structure may include one or more probes.