Abstract:
To provide a core for reactor capable of reducing the eddy current loss and improving the direct current superposition characteristics, a manufacturing method thereof, and a reactor. A core for reactor M is obtained by press molding metallic magnetic particles coated with an insulating coated film, and the metallic magnetic particles have the following compositions: (1) the mean particle size is 1 μm or more and 70 μm or less; (2) the variation coefficient Cv which is a ratio (σ/μ) of the standard deviation (σ) of the particle size and the mean particle size (μ) is 0.40 or less; and (3) the degree of circularity is 0.8 or more and 1.0 or less. On the outside of the insulating coated film, at least one of a heat-resistance imparting protective film and a flexible protective film is further provided as a outer coated film.
Abstract:
The present invention provides a powder for a magnetic member being excellent in moldability and difficult to oxidize, a powder compact produced from the powder, and a magnetic member suitable for a raw material of a magnetic member such as a rare earth magnet. A powder for a magnetic member includes magnetic particles 1 which constitute the powder for a magnetic member and each of which is composed of less than 40% by volume of a hydrogen compound 3 of a rare earth element, and the balance composed of an iron-containing material 2 which contains iron and an iron-boron alloy containing iron and boron. The hydrogen compound 3 of a rare earth element is dispersed in a phase of the iron-containing material 2. An antioxidant layer 4 having a low-oxygen permeability coefficient is provided on the surface of each of the magnetic particles 1. Since the phase of the iron-containing material 2 is uniformly present in each of the magnetic particles 1, the powder has excellent moldability and the density of a powder compact can be easily increased. By providing the antioxidant layer 4, oxidation of a newly formed surface formed on each of the magnetic particle 1 during molding is little oxidized, and a decrease in a magnetic phase ratio due to the presence of an oxide can be suppressed.
Abstract:
Metal nanoink (100) for bonding an electrode of a semiconductor die and an electrode of a substrate and/or bonding an electrode of a semiconductor die and an electrode of another semiconductor die by sintering under pressure is produced by injecting oxygen into an organic solvent (105) in the form of oxygen nanobubbles (125) or oxygen bubbles (121) either before or after metal nanoparticles (101) whose surfaces are coated with a dispersant (102) are mixed into the organic solvent (105). Bumps are formed on the electrode of the semiconductor die and the electrode of the substrate by ejecting microdroplets of the metal nanoink (100) onto the electrodes, the semiconductor die is turned upside down and overlapped in alignment over the substrate, and then, the metal nanoparticles of the bumps are sintered under pressure by pressing and heating the bumps between the electrodes. As a result, generation of voids during sintering under pressure is minimized.
Abstract:
A soft magnetic material is a soft magnetic material including a composite magnetic particle (30) having a metal magnetic particle (10) mainly composed of Fe and an insulating coating (20) covering metal magnetic particle (10), and insulating coating (20) contains an iron phosphate compound and an aluminum phosphate compound. The atomic ratio of Fe contained in a contact surface of insulating coating (20) in contact with metal magnetic particle (10) is larger than the atomic ratio of Fe contained in the surface of insulating coating (20). The atomic ratio of Al contained in the contact surface of insulating coating (20) in contact with metal magnetic particle (10) is smaller than the atomic ratio of Al contained in the surface of insulating coating (20). Thus, iron loss can be reduced.
Abstract:
To provide a core for reactor capable of reducing the eddy current loss and improving the direct current superposition characteristics, a manufacturing method thereof, and a reactor. A core for reactor M is obtained by press molding metallic magnetic particles coated with an insulating coated film, and the metallic magnetic particles have the following compositions: (1) the mean particle size is 1 μm or more and 70 μm or less; (2) the variation coefficient Cv which is a ratio (σ/μ) of the standard deviation (σ) of the particle size and the mean particle size (μ) is 0.40 or less; and (3) the degree of circularity is 0.8 or more and 1.0 or less. On the outside of the insulating coated film, at least one of a heat-resistance imparting protective film and a flexible protective film is further provided as a outer coated film.
Abstract:
A bonding apparatus (10) that bonds an electrode of a semiconductor die (12) and an electrode of a circuit board (19) using a metal nano paste includes a bump formation mechanism (20) that forms bump by injecting microdroplets of a metal nano paste on each electrode, a primary bonding mechanism (50) that carries out primary bonding to the electrodes in a non-conductive state by pressing the bump of the semiconductor die (12) against the bump of the circuit board (19), and a secondary bonding mechanism (80) that carries out secondary bonding so that the electrodes become conductive by pressurizing the primary bonded bump in bonding direction and by heating the bump to pressurize and sinter the metal nanoparticles in the bump. With this, it is possible to efficiently bond the electrodes with a simple and easy way while reducing a bonding load.
Abstract:
A bonding apparatus (10) that bonds an electrode of a semiconductor die (12) and an electrode of a circuit board (19) using a metal nano paste includes a bump formation mechanism (20) that forms bump by injecting microdroplets of a metal nano paste on each electrode, a primary bonding mechanism (50) that carries out primary bonding to the electrodes in a non-conductive state by pressing the bump of the semiconductor die (12) against the bump of the circuit board (19), and a secondary bonding mechanism (80) that includes a pressurizing unit that pressurizes the primary bonded bump in bonding direction, and that carries out secondary bonding so that the electrodes become conductive by heating the bump up to a temperature higher than a binder removal temperature of the metal nano paste and a dispersant removal temperature of the metal nano paste, removing the binder and the dispersant, and pressurizing and sintering the metal nanoparticles in the bump. With this, it is possible to efficiently bond the electrodes with a simple and easy way while reducing a bonding load.
Abstract:
A soft magnetic material, a dust core, a method for manufacturing the soft magnetic material, and a method for manufacturing the dust core that can improve DC bias characteristics are provided.A soft magnetic material includes a plurality of metal magnetic particles 10 whose coefficient of variation Cv (σ/μ), which is a ratio of a standard deviation (σ) of a particle size of the metal magnetic particles 10 to an average particle size (μ) thereof, is 0.40 or less and whose circularity Sf is 0.80 or more and 1 or less. The metal magnetic particles 10 preferably have an average particle size of 1 μm or more and 70 μm or less. The soft magnetic material preferably further includes an insulating coated film that surrounds a surface of each of the metal magnetic particles 10.
Abstract:
A soft magnetic material includes a plurality of composite magnetic particles (40) each including a metal magnetic particle (10) and an insulation coating (20) covering the surface of the metal magnetic particle (10), wherein the insulation coating (20) contains Si (silicon), and 80% or more of Si contained in the insulation coating constitutes a silsesquioxane skeleton. Therefore, it is possible to effectively decrease a hysteresis loss while suppressing an increase in eddy-current loss.
Abstract:
A soft magnetic material includes a plurality of composite magnetic particles (40) each including a metal magnetic particle (10) and an insulation coating (20) covering the surface of the metal magnetic particle (10), wherein the insulation coating (20) contains Si (silicon), and 80% or more of Si contained in the insulation coating constitutes a silsesquioxane skeleton. Therefore, it is possible to effectively decrease a hysteresis loss while suppressing an increase in eddy-current loss.