Abstract:
A wireless communication system includes a processor that receives a downlink control information (DCI) associated with a transmission channel used for transmitting a RF signal and a control channel element index associated with the DCI. The processor determines a scrambling code based on the control channel element index for the DCI, scrambles the DCI using the scrambling code, generates a scrambled DCI, and modulates the scrambled. DCI to generate a modulated symbol. The processor uses look-up tables to determine a resource element group (REG) based on the control channel element index, map the modulated symbol to the REG, and generate a transmission frame.
Abstract:
A user friendly, safe and efficient continuous flow irrigation endoscope having only a single housing sheath without an inner sheath. The exclusion of the inner sheath increases the effective lumen of the endoscope. A long hollow cylindrical tube, capable of performing a to and fro and rotary motion, is placed inside the housing sheath to function as an endoscopic instrument, but also to serve as a conduit for evacuating waste fluid and detached tissue pieces present inside a tissue cavity. A single inflow port located at the proximal end of the single housing sheath allows the irrigation fluid to enter the tissue cavity via the lumen of the said housing sheath. The invented endoscope system has a single inflow port, a single outflow port, without an inner sheath so that all waste fluid and tissue debris present inside cavity are evacuated via the same single outflow port. No type of feedback mechanism, such as mechanical or electrical feedback mechanism, is incorporated in the endoscope to facilitate the removal of detached tissue pieces or waste fluid.
Abstract:
Apparatus for and a method of decompression of block coded video data in a multi-core processor. The processor cores decode respective coded groups of blocks of video data independently, in parallel and deblock respective decoded groups of blocks of video data independently and in parallel with the decode operations and with other deblock operations.
Abstract:
A continuous flow irrigation endoscope and a continuous flow irrigation fluid management system, both designed to be compatible to each other and to function as a single system. The endoscope and the fluid management system are synergistic to each other such that both enhance the efficiency of each other. The invented system allows a body tissue cavity to be distended by continuous flow irrigation so that detached tissue pieces and waste fluid present inside a body tissue cavity are continuously automatically evacuated from the tissue cavity without causing the cavity to collapse at any stage and without the need of withdrawing the endoscope of a part of the endoscope from the tissue cavity. No type of feedback mechanism, such as mechanical or electrical, or valve or valve like systems, are incorporated in the endoscope to influence or facilitate the removal of detached tissue pieces or waste fluid in any manner.
Abstract:
A continuous flow irrigation endoscope and a continuous flow irrigation fluid management system, both designed to be compatible to each other and meant to function as a single system. The endoscope and the fluid management system are synergistic to each other such that both enhance the efficiency of each other. The system allows a body tissue cavity to be distended by continuous flow irrigation so that the detached tissue pieces and waste fluid present inside a body tissue cavity are continuously automatically evacuated from the tissue cavity without causing the cavity to collapse at any stage and without the need of withdrawing the endoscope or a part of the endoscope from the tissue cavity.
Abstract:
A method of forming a hybrid inorganic/organic dielectric layer on a substrate for use in an integrated circuit is provided, wherein the method includes forming a first dielectric layer on the substrate via chemical vapor deposition, and forming a second dielectric layer on the first dielectric layer via chemical vapor deposition, wherein one of the first dielectric layer and the second dielectric layer is formed from an organic dielectric material, and wherein the other of the first dielectric layer and the second dielectric layer is formed from an inorganic dielectric material.
Abstract:
A method of stabilizing a poly(paraxylylene) dielectric thin film after forming the dielectric thin film via transport polymerization is disclosed, wherein the method includes annealing the dielectric thin film under at least one of a reductive atmosphere and a vacuum at a temperature above a reversible solid phase transition temperature of the dielectric film to convert the film from a lower temperature phase to a higher temperature phase, and cooling the dielectric thin film at a sufficient rate to a temperature below the solid phase transition temperature of the dielectric thin film to trap substantial portions of the film in the higher temperature phase.
Abstract:
A system for minimizing leakage of fluid distending media by the sides of the endoscopic instrument in endoscopic procedures such as arthroscopy, hysteroscopy or laparoscopy. A double-wall flexible tubular sheath having walls containing pressurized fluid is mounted over an endoscopic instrument. The double-wall flexible tubular sheath moves in and out of a natural opening of a tissue cavity or through an incision made in the cavity wall.
Abstract:
The present invention pertains to a processing method to produce a porous polymer film that consists of sp2C—X and HC-sp3Cα—X bonds (wherein, X═H or F), and exhibits at least a crystal melting temperature, (“Tm”). The porous polymer films produced by this invention are useful for fabricating future integrated circuits (“IC's”). The method described herein is useful for preparing the porous polymer films by polymerizing reactive intermediates, formed from a first-precursor, with a low feed rate and at temperatures equal to or below a melting temperature of intermediate (T1m). Second-precursors that do not become reactive intermediates or have an incomplete conversion to reactive intermediates are also transported to a deposition chamber and become an inclusion of the deposited film. By utilizing a subsequent in-situ, post treatment process the inclusions in the deposited film can be removed to leave micro-pores in the resultant film. Annealing methods are used herein to stabilize the polymer films after reactive plasma etching. Furthermore, the present invention pertains to employment of reductive plasma conditions for patterning polymer films that consist of sp2C—X and HC-sp3Cα—X bonds (wherein, X═H, F).
Abstract:
A system to minimize fluid turbulence inside a tissue cavity during endoscopic procedures. A body tissue cavity of a subject is distended by continuous flow irrigation using a solenoid operated pump on the inflow side and a positive displacement pump, such as a peristaltic pump, on the outflow side, such that the amplitude of the pressure pulsations created by the outflow positive displacement pump inside the said tissue cavity is substantially dampened to almost negligible levels. The present invention also provides a method for accurately determining the rate of fluid loss into the subject's body system during any endoscopic procedure without utilizing any deficit weight or fluid volume calculation, the same being accomplished by using two fluid flow rate sensors. The present invention also provides a system of creating and maintaining any desired pressure in a body tissue cavity for any desired cavity outflow rate.