摘要:
Photonic integrated circuits (PICs) may include transmit and receive PICs that include individually tunable optical elements. In one implementation, a device may include a number of optical elements that form a number of optical channels. Tuners may be used to modify a property associated with the at least one of the optical elements where the modified properties of the optical elements adjust a frequency grid of the optical channels.
摘要:
Photonic integrated circuits (PICs) may include transmit and receive PICs that include individually tunable optical elements. In one implementation, a device may include a number of optical elements that form a number of optical channels. Tuners may be used to modify a property associated with the at least one of the optical elements where the modified properties of the optical elements adjust a frequency grid of the optical channels.
摘要:
Consistent with the present disclosure, optical devices are provided along different optical paths in a photonic integrated circuit (PIC). The optical components have different optical losses associated therewith so that optical signals propagating in the optical paths have desired power levels, which may be uniform, for example.
摘要:
A method of calibrating a monolithic transmitter photonic integrated circuit (TxPIC) chip is disclosed where the chip contains integrated arrays of laser sources and electro-optic modulators forming a plurality of different wavelength signal channels where each laser source on the chip is sequentially selected and tested for the output power and operational wavelength. Calibration data is initially determined by checking an amount of output power of each laser output and any offset of each laser operational wavelength from a desired predetermined value. Then, adjustment of the operational wavelength of each laser source is accomplished to substantially match the desired predetermined value. The laser source output power and operational wavelength may then be rechecked to determine if there is any remaining offset of each laser operational wavelength from the desired predetermined value. If so, the laser source output power can be readjusted to a desired amount and its operational wavelength can be readjusted to the desired predetermined wavelength value. The final calibration data it then stored for future reference as a benchmark in later adjustment of laser source output power and operational wavelength for each laser source on the tested chip when the chip has been installed in the field.
摘要:
Consistent with the present disclosure, optical devices are provided along different optical paths in a photonic integrated circuit (PIC). The optical components have different optical losses associated therewith so that optical signals propagating in the optical paths have desired power levels, which may be uniform, for example.
摘要:
A high capacity optical transmitter implemented on a photonic integrated circuit chip comprises a single light source which supplies a continuous wave having a particular wavelength to a plurality of modulators to form modulated optical information signals. A phase shifter is coupled to at least one of the modulators and is used to shift the phase of the corresponding modulated optical information signal associated with a particular modulator. A polarization beam combiner receives each of the modulated optical information signals from the modulators and the modulated optical information signal from the phase shifter and combines each of these signals to form a polarization multiplexed differential quadrature phase-shift keying signal. The light source, the plurality of modulators, the phase shifter and the polarization beam combiner are all integrated on the chip.
摘要:
A high capacity optical transmitter implemented on a photonic integrated circuit chip comprises a single light source which supplies a continuous wave having a particular wavelength to a plurality of modulators to form modulated optical information signals. A phase shifter is coupled to at least one of the modulators and is used to shift the phase of the corresponding modulated optical information signal associated with a particular modulator. A polarization beam combiner receives each of the modulated optical information signals from the modulators and the modulated optical information signal from the phase shifter and combines each of these signals to form a polarization multiplexed differential quadrature phase-shift keying signal. The light source, the plurality of modulators, the phase shifter and the polarization beam combiner are all integrated on the chip.
摘要:
Method and apparatus for utilizing a probe card for testing in-wafer photonic integrated circuits (PICs) comprising a plurality of in-wafer photonic integrated circuit (PIC) die formed in the surface of a semiconductor wafer where each PIC comprises one or more electro-optic components with formed wafer-surface electrical contacts. The probe card has a probe card body with at least one row of downwardly dependent, electrically conductive contact probes. The probe body is transversely translated over the surface of the wafer to a selected in-wafer photonic integrated circuit (PIC) die. Then, the contact probes of the probe card are brought into engagement with surface electrical contacts of the selected photonic integrated circuit (PIC) die for testing the operation of electro-optic components in the selected in-wafer photonic integrated circuit (PIC) die.
摘要:
A coolerless photonic integrated circuit (PIC), such as a semiconductor electro-absorption modulator/laser (EML) or a coolerless optical transmitter photonic integrated circuit (TxPIC), may be operated over a wide temperature range at temperatures higher then room temperature without the need for ambient cooling or hermetic packaging. Since there is large scale integration of N optical transmission signal WDM channels on a TxPIC chip, a new DWDM system approach with novel sensing schemes and adaptive algorithms provides intelligent control of the PIC to optimize its performance and to allow optical transmitter and receiver modules in DWDM systems to operate uncooled. Moreover, the wavelength grid of the on-chip channel laser sources may thermally float within a WDM wavelength band where the individual emission wavelengths of the laser sources are not fixed to wavelength peaks along a standardized wavelength grid but rather may move about with changes in ambient temperature. However, control is maintained such that the channel spectral spacing between channels across multiple signal channels, whether such spacing is periodic or aperiodic, between adjacent laser sources in the thermally floating wavelength grid are maintained in a fixed relationship. Means are then provided at an optical receiver to discover and lock onto floating wavelength grid of transmitted WDM signals and thereafter demultiplex the transmitted WDM signals for OE conversion.
摘要:
A coolerless photonic integrated circuit (PIC), such as a semiconductor electro-absorption modulator/laser (EML) or a coolerless optical transmitter photonic integrated circuit (TxPIC), may be operated over a wide temperature range at temperatures higher then room temperature without the need for ambient cooling or hermetic packaging. Since there is large scale integration of N optical transmission signal WDM channels on a TxPIC chip, a new DWDM system approach with novel sensing schemes and adaptive algorithms provides intelligent control of the PIC to optimize its performance and to allow optical transmitter and receiver modules in DWDM systems to operate uncooled. Moreover, the wavelength grid of the on-chip channel laser sources may thermally float within a WDM wavelength band where the individual emission wavelengths of the laser sources are not fixed to wavelength peaks along a standardized wavelength grid but rather may move about with changes in ambient temperature. However, control is maintained such that the channel spectral spacing between channels across multiple signal channels, whether such spacing is periodic or aperiodic, between adjacent laser sources in the thermally floating wavelength grid are maintained in a fixed relationship. Means are then provided at an optical receiver to discover and lock onto floating wavelength grid of transmitted WDM signals and thereafter demultiplex the transmitted WDM signals for OE conversion.