Abstract:
A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
Abstract:
A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
Abstract:
A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
Abstract:
An integrated circuit product includes an NMOS transistor having a gate structure that includes an NMOS gate insulation layer, a first NMOS metal layer positioned on the NMOS gate insulation layer, an NMOS metal silicide material positioned above the first NMOS metal layer, and a layer of a second metal material positioned above and in contact with the NMOS gate insulation layer, the first NMOS metal layer, and the NMOS metal silicide layer. The PMOS transistor has a gate structure that includes a PMOS gate insulation layer, a first PMOS metal layer positioned on the PMOS gate insulation layer, a PMOS metal silicide material positioned above the first PMOS metal layer, and a layer of the second metal material positioned above and in contact with the PMOS gate insulation layer, the first PMOS metal layer, and the PMOS metal silicide layer.
Abstract:
Methods of scaling thickness of a gate dielectric structure that overlies a semiconductor substrate, methods of forming an integrated circuit, and integrated circuits are provided. A method of scaling thickness of a gate dielectric structure that overlies a semiconductor substrate includes providing the semiconductor substrate. An interfacial oxide layer is formed in or on the semiconductor substrate. A high-k dielectric layer is formed over the interfacial oxide layer. An oxygen reservoir is formed over at least a portion of the high-k dielectric layer. A sealant layer is formed over the oxygen reservoir. The semiconductor substrate including the oxygen reservoir disposed thereon is annealed to diffuse oxygen through the high-k dielectric layer and the interfacial oxide layer from the oxygen reservoir. Annealing extends the interfacial oxide layer into the semiconductor substrate at portions of the semiconductor substrate that underlie the oxygen reservoir to form a regrown interfacial region in or on the semiconductor substrate.
Abstract:
Disclosed herein are illustrative methods and devices that involve forming spacers with internally trimmed internal surfaces to increase the width of the upper portions of a gate cavity. In some embodiments, the internal surface of the spacer has a stepped cross-sectional configuration or a tapered cross-sectional configuration. In one example, a device is disclosed wherein the P-type work function metal for a PMOS device is positioned only within the lateral space defined by the untrimmed internal surfaces of the spacers, while the work function adjusting metal for the NMOS device is positioned laterally between the lateral spaces defined by both the trimmed and untrimmed internal surfaces of the sidewall spacers.
Abstract:
An improved field effect transistor and method of fabrication are disclosed. A barrier layer stack is formed in the base and sidewalls of a gate cavity. The barrier layer stack has a first metal layer and a second metal layer. A gate electrode metal is deposited in the cavity. The barrier layer stack is thinned or removed on the sidewalls of the gate cavity, to more precisely control the voltage threshold of the field effect transistor.
Abstract:
An integrated circuit product includes an NMOS transistor having a gate structure comprised of an NMOS gate insulation layer comprised of a high-k gate insulation material, an NMOS metal silicide region positioned above the NMOS gate insulation layer, and an NMOS metal layer positioned on the NMOS metal silicide region, and a PMOS transistor having a gate structure comprised of a PMOS gate insulation layer comprised of the high-k gate insulation material, a first PMOS metal layer positioned on the PMOS gate insulation layer, a PMOS metal silicide region positioned above the first PMOS metal layer, wherein the PMOS metal silicide region and the NMOS metal silicide region are comprised of the same metal silicide, and a second PMOS metal layer positioned on the PMOS metal silicide region, wherein the NMOS metal layer and second PMOS metal layer are comprised of the same material.
Abstract:
A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
Abstract:
One illustrative method disclosed herein includes removing sacrificial gate structures for NMOS and PMOS transistors to thereby define NMOS and PMOS gate cavities, forming a high-k gate insulation layer in the NMOS and PMOS gate cavities, forming a lanthanide-based material layer on the high-k gate insulation layer in the NMOS and PMOS gate cavities, performing a heating process to drive material from the lanthanide-based material layer into the high-k gate insulation layer so as to thereby form a lanthanide-containing high-k gate insulation layer in each of the NMOS and PMOS gate cavities, and forming gate electrode structures above the lanthanide-containing high-k gate insulation layer in the NMOS and PMOS gate cavities.