Abstract:
Various embodiments of hazard detectors are presented. A hazard sensor may be present that detects the presence of a hazardous condition. A light sensor may be present that detects an ambient brightness level. A motion sensor may be present that detects motion of a user. A light may be present that is capable of outputting light. A processing system may receive an indication of the ambient brightness level in the ambient environment of the hazard detector from the light sensor. The processing system may determine that the ambient brightness level is less than a threshold brightness. The processing system may receive information indicative of the user moving in the ambient environment of the hazard detector. The processing system may cause the light to illuminate based on the ambient brightness level being below the threshold brightness and the user moving in the ambient environment of the hazard detector.
Abstract:
According to one embodiment, a casing of a hazard detector includes a body portion and a button portion. The button portion is coupled with the body portion via a plurality of arms. The arms allow the button portion to be axially movable relative to the body portion and also couple the button portion with the body portion so that tabs that extend radially outward from the button portion are positioned under and contact an inwardly facing surface of the body portion. The arms bias the button portion axially outward relative to the body portion so as maintain contact between the tabs and the inwardly facing surface. In this configuration, when the button portion is pressed at a position off-axis from a central axis of the button portion, the button portion pivots about one or more contact points between one or more tabs and the inwardly facing surface.
Abstract:
Embodiments provided herein relate to monitoring and reporting household activities. In one embodiment, a method includes: monitoring, via a smart device, one or more activities associated with: a household; analyzing, via the smart device, a processor, or both, at least one characteristic of the one or more activities to discern information about the household; and reporting, via the device, the discerned information.
Abstract:
Embodiments provided herein relate to controlling a household via one or more household policies. In one embodiment, a method includes: receiving, at a processor, a household policy for a household, the household policy related to attaining an end goal; determining, via interpretation of the household policy by the processor, an end goal state of the household policy; incrementally modifying a control trigger threshold of a conditionally controlled smart device over time until the end goal state is reached; wherein the control trigger threshold indicates when the conditionally controlled smart device should be controlled to implement a particular function.
Abstract:
An electronic device may include a processor and a network interface that may include a first radio and a second radio. The processor may be configured to perform wireless communication jamming attack detection by occasionally performing clear channel verification utilizing the network interface to determine whether a threshold number of devices' channels are incapacitated in a wireless network within a threshold amount of time and/or by sending a heartbeat signal from the first radio and determining whether the second radio received the heartbeat signal.
Abstract:
An occupancy sensing electronic thermostat is described that includes a thermostat body, an electronic display that is viewable by a user in front of the thermostat, a passive infrared sensor for measuring infrared energy and an infrared energy directing element formed integrally with a front surface of the thermostat body. The passive infrared sensor may be positioned behind the infrared energy directing element such that infrared energy is directed thereonto by the infrared energy directing element. The thermostat may also include a temperature sensor and a microprocessor programmed to detect occupancy based on measurements from the passive infrared sensor.
Abstract:
A system including a thermostat user interface for a network-connected thermostat is described. The system includes a thermostat including a frustum-shaped shell body having a circular cross-section and a circular rotatable ring, which is user rotatable for adjusting a setting of the thermostat. The system further includes a client application that is operable on a touch-screen device separate from the thermostat, that displays a graphical representation of a circular dial, that detects a user-input motion proximate the graphical representation, that determines a user-selected setpoint temperature value based on the user-input motion, that displays a numerical representation of the user-selected setpoint temperature value, and that wirelessly transmits to the thermostat data representative of the user-selected setpoint temperature.
Abstract:
A boiler control device may include a housing and a wireless communication module for receiving coded control signals from the thermostat device. The boiler control device may also include boiler control circuitry for selectively controlling activation of the boiler-based heating system according to the coded control signals from the thermostat device. An onboard antenna disposed within the housing and communicatively coupled to the wireless communication module, and an interface configured to receive an auxiliary antenna. The auxiliary antenna may be disposed outside of the housing. Detection circuitry may detect times when the auxiliary antenna is communicatively coupled to the interface. Switching circuitry may interrupt communication between the onboard antenna and the wireless communication module during the times when the auxiliary antenna is communicatively coupled to the interface.
Abstract:
Methods and systems facilitate network communications between a wireless network-connected thermostat and a cloud-based management server in a manner that promotes reduced power usage and extended service life of a energy-storage device of the thermostat, while at the same time accomplishing timely data transfer between the thermostat and the cloud-based management server for suitable and time-appropriate control of an HVAC system. The thermostat further comprises powering circuitry configured to: extract electrical power from one or more HVAC control wires in a manner that does not require a “common” wire; supply electrical power for thermostat operation; recharge the energy-storage device (if needed) using any surplus extracted power; and discharge the energy-storage device to assist in supplying electrical power for thermostat operation during intervals in which the extracted power alone is insufficient for thermostat operation.
Abstract:
In various embodiments, a hazard detector is presented. The hazard detector may include a hazard detection sensor that detects a presence of a type of hazard. The hazard detector may include a light and a light sensor that senses a brightness level in an ambient environment of the hazard detector. The hazard detector may include a processing system configured to receive an indication of the brightness level in the ambient environment of the hazard detector from the light sensor. The processing system may determine the brightness level in the ambient environment of the hazard detector has reached a threshold value. A status check of one or more components of the hazard detector may be performed. The processing system may cause the light to illuminate using a selected illumination state in response to the determining the brightness level in the ambient environment of the hazard detector has reached the threshold value.