SEMI-SYNTHETIC TEREPHTHALIC ACID VIA MICROORGANISMS THAT PRODUCE MUCONIC ACID

    公开(公告)号:US20180312883A1

    公开(公告)日:2018-11-01

    申请号:US16032772

    申请日:2018-07-11

    CPC classification number: C12P7/44 C12N9/88 C12Y402/01002

    Abstract: The invention provides a non-naturally occurring microbial organism having a muconate pathway having at least one exogenous nucleic acid encoding a muconate pathway enzyme expressed in a sufficient amount to produce muconate. The muconate pathway including an enzyme selected from the group consisting of a beta-ketothiolase, a beta-ketoadipyl-CoA hydrolase, a beta-ketoadipyl-CoA transferase, a beta-ketoadipyl-CoA ligase, a 2-fumarylacetate reductase, a 2-fumarylacetate dehydrogenase, a trans-3-hydroxy-4-hexendioate dehydratase, a 2-fumarylacetate aminotransferase, a 2-fumarylacetate aminating oxidoreductase, a trans-3-amino-4-hexenoate deaminase, a beta-ketoadipate enol-lactone hydrolase, a muconolactone isomerase, a muconate cycloisomerase, a beta-ketoadipyl-CoA dehydrogenase, a 3-hydroxyadipyl-CoA dehydratase, a 2,3-dehydroadipyl-CoA transferase, a 2,3-dehydroadipyl-CoA hydrolase, a 2,3-dehydroadipyl-CoA ligase, a muconate reductase, a 2-maleylacetate reductase, a 2-maleylacetate dehydrogenase, a cis-3-hydroxy-4-hexendioate dehydratase, a 2-maleylacetate aminoatransferase, a 2-maleylacetate aminating oxidoreductase, a cis-3-amino-4-hexendioate deaminase, and a muconate cis/trans isomerase. Other muconate pathway enzymes also are provided. Additionally provided are methods of producing muconate.

    Semi-synthetic terephthalic acid via microorganisms that produce muconic acid

    公开(公告)号:US10041093B2

    公开(公告)日:2018-08-07

    申请号:US15383593

    申请日:2016-12-19

    CPC classification number: C12P7/44 C12N9/88 C12Y402/01002

    Abstract: The invention provides a non-naturally occurring microbial organism having a muconate pathway having at least one exogenous nucleic acid encoding a muconate pathway enzyme expressed in a sufficient amount to produce muconate. The muconate pathway including an enzyme selected from the group consisting of a beta-ketothiolase, a beta-ketoadipyl-CoA hydrolase, a beta-ketoadipyl-CoA transferase, a beta-ketoadipyl-CoA ligase, a 2-fumarylacetate reductase, a 2-fumarylacetate dehydrogenase, a trans-3-hydroxy-4-hexendioate dehydratase, a 2-fumarylacetate aminotransferase, a 2-fumarylacetate aminating oxidoreductase, a trans-3-amino-4-hexenoate deaminase, a beta-ketoadipate enol-lactone hydrolase, a muconolactone isomerase, a muconate cycloisomerase, a beta-ketoadipyl-CoA dehydrogenase, a 3-hydroxyadipyl-CoA dehydratase, a 2,3-dehydroadipyl-CoA transferase, a 2,3-dehydroadipyl-CoA hydrolase, a 2,3-dehydroadipyl-CoA ligase, a muconate reductase, a 2-maleylacetate reductase, a 2-maleylacetate dehydrogenase, a cis-3-hydroxy-4-hexendioate dehydratase, a 2-maleylacetate aminoatransferase, a 2-maleylacetate aminating oxidoreductase, a cis-3-amino-4-hexendioate deaminase, and a muconate cis/trans isomerase. Other muconate pathway enzymes also are provided. Additionally provided are methods of producing muconate.

    Process of separating components of a fermentation broth

    公开(公告)号:US09994505B2

    公开(公告)日:2018-06-12

    申请号:US14066598

    申请日:2013-10-29

    CPC classification number: C07C29/76 C12P7/18 C07C31/207

    Abstract: A process of isolating 1,4-butanediol (1,4-BDO) from a fermentation broth includes separating a liquid fraction enriched in 1,4-BDO from a solid fraction comprising cells, removing water from said liquid fraction, removing salts from said liquid fraction, and purifying 1,4-BDO. A process for producing 1,4-BDO includes culturing a 1,4-BDO-producing microorganism in a fermentor for a sufficient period of time to produce 1,4-BDO. The 1,4-BDO-producing microorganism includes a microorganism having a 1,4-BDO pathway having one or more exogenous genes encoding a 1,4-BDO pathway enzyme and/or one or more gene disruptions. The process for producing 1,4-BDO further includes isolating 1,4-BDO.

    Methods for synthesis of olefins and derivatives
    48.
    发明授权
    Methods for synthesis of olefins and derivatives 有权
    合成烯烃和衍生物的方法

    公开(公告)号:US09365874B2

    公开(公告)日:2016-06-14

    申请号:US13887140

    申请日:2013-05-03

    Abstract: The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

    Abstract translation: 本发明提供了制备丙烯酸的方法。 该方法包括在交叉复分解转化催化剂存在下使富马酸与足够量的乙烯接触,以产生约2摩尔丙烯酸/摩尔富马酸。 还提供了丙烯酸酯。 该方法包括在交叉复分解转化催化剂存在下使富马酸二酯与足够量的乙烯接触,以产生每摩尔富马酸二酯约2摩尔丙烯酸酯。 提供了用于生产丙烯酸或丙烯酸酯的方法的综合方法,其将富马酸的生物生产与易位转化相结合。 还提供丙烯酸和丙烯酸酯生产。

    ORGANISMS FOR THE PRODUCTION OF CYCLOHEXANONE
    50.
    发明申请
    ORGANISMS FOR THE PRODUCTION OF CYCLOHEXANONE 审中-公开
    生产环己酮的有机体

    公开(公告)号:US20140356919A1

    公开(公告)日:2014-12-04

    申请号:US14172079

    申请日:2014-02-04

    CPC classification number: C12P7/26 C12N9/16 C12N9/88 C12N9/93 C12N15/52 C12N15/70

    Abstract: A non-naturally occurring microbial organism has cyclohexanone pathways that include at least one exogenous nucleic acid encoding a cyclohexanone pathway enzyme. A pathway includes a 2-ketocyclohexane-1-carboxyl-CoA hydrolase (acting on C—C bond), a 2-ketocyclohexane-1-carboxylate decarboxylase and an enzyme selected from a 2-ketocyclohexane-1-carboxyl-CoA hydrolase (acting on thioester), a 2-ketocyclohexane-1-carboxyl-CoA transferase, and a 2-ketocyclohexane-1-carboxyl-CoA synthetase. A pathway includes an enzyme selected from a 6-ketocyclohex-1-ene-1-carboxyl-CoA hydrolase (acting on C—C bond), a 6-ketocyclohex-1-ene-1-carboxyl-CoA synthetase, a 6-ketocyclohex-1-ene-1-carboxyl-CoA hydrolase (acting on thioester), a 6-ketocyclohex-1-ene-1-carboxyl-CoA transferase, a 6-ketocyclohex-1-ene-1-carboxyl-CoA reductase, a 6-ketocyclohex-1-ene-1-carboxylate decarboxylase, a 6-ketocyclohex-1-ene-1-carboxylate reductase, a 2-ketocyclohexane-1-carboxyl-CoA synthetase, a 2-ketocyclohexane-1-carboxyl-CoA transferase, a 2-ketocyclohexane-1-carboxyl-CoA hydrolase (acting on thioester), a 2-ketocyclohexane-1-carboxylate decarboxylase, and a cyclohexanone dehydrogenase. A pathway includes an adipate semialdehyde dehydratase, a cyclohexane-1,2-diol dehydrogenase, and a cyclohexane-1,2-diol dehydratase. A pathway includes a 3-oxopimelate decarboxylase, a 4-acetylbutyrate dehydratase, a 3-hydroxycyclohexanone dehydrogenase, a 2-cyclohexenone hydratase, a cyclohexanone dehydrogenase and an enzyme selected from a 3-oxopimeloyl-CoA synthetase, a 3-oxopimeloyl-CoA hydrolase (acting on thioester), and a 3-oxopimeloyl-coA transferase. Each these pathways can include a PEP carboxykinase. A method for producing cyclohexanone includes culturing these non-naturally occurring microbial organisms.

    Abstract translation: 非天然存在的微生物有机体具有包含至少一种编码环己酮途径酶的外源核酸的环己酮途径。 途径包括2-酮环己烷-1-羧基-CoA水解酶(作用于C-C键),2-酮环己烷-1-羧酸脱羧酶和选自2-酮环己烷-1-羧基-CoA水解酶的酶(作用 在硫酯上),2-酮环己烷-1-羧基-CoA转移酶和2-酮环己烷-1-羧基-CoA合成酶。 途径包括选自6-酮环己-1-烯-1-羧基-CoA水解酶(作用于C-C键)的酶,6-酮环己-1-烯-1-羧基-CoA合成酶,6- 酮酮环己-1-烯-1-羧基-CoA水解酶(作用于硫酯),6-酮环己-1-烯-1-羧基-CoA转移酶,6-酮环己-1-烯-1-羧基-CoA还原酶, 6-酮环己-1-烯-1-羧酸脱羧酶,6-酮环己-1-烯-1-羧酸还原酶,2-酮环己烷-1-羧基-CoA合成酶,2-酮环己烷-1-羧基-CoA 转移酶,2-酮环己烷-1-羧基-CoA水解酶(作用于硫酯),2-酮环己烷-1-羧酸脱羧酶和环己酮脱氢酶。 途径包括己二酸半醛脱水酶,环己烷-1,2-二醇脱氢酶和环己烷-1,2-二醇脱水酶。 途径包括3-氧代邻苯二甲酸脱羧酶,4-乙酰基丁酸脱水酶,3-羟基环己酮脱氢酶,2-环己烯酮水合酶,环己酮脱氢酶和选自3-氧代木糖酰辅酶A合成酶,3-氧代木糖酰-CoA水解酶 (作用于硫酯)和3-氧代木糖酰辅酶A转移酶。 每个这些途径可以包括PEP羧基激酶。 生产环己酮的方法包括培养这些非天然存在的微生物。

Patent Agency Ranking