Abstract:
A port including a lens for coupling one optical element with another optical element. The lens includes a focusing lens surface that has optical power and a flat lens surface that has little or no optical power. The lens is typically aspherical and couples high angle rays emitted from a source and also introduces aberrations such that the image formed on the receiving optical element is not reflected back to the source optical element. A point is imaged as a spot. The port couples light between optical elements by slightly defocusing the source without impeding the efficiency of the port.
Abstract:
An interference-reducing optoelectronic device determines the value of a current data bit in an optical data stream. A receiver receives the optical data stream, which is converted to a series of samples by a D/A converter. A set of adaptive filters, each filter corresponding to a unique possible value for one or more prior data bits, filters the series of samples utilizing variable tap coefficients to generate filtered output values. The variable tap coefficients are at least partially different than the variable tap coefficients of another adaptive filter. Comparators compare the filtered output values against filter-specific adaptive threshold values to generate tentative values for the current data bit. A delay mechanism delays a determined value for the prior data bits, and a selection mechanism determines the value of the current data bit by selecting the tentative value corresponding to the delayed determined value of the prior data bits.
Abstract:
This disclosure concerns optical packages such as may be used in optical transceivers and transmitters. In one example, an optical package includes a header assembly having a base portion to which is attached a header structure that is split into first and second portions that are separated from each other by a space. The header structure further includes one or more electrical leads extending through the base portion and into one of the first and second portions of the header structure. An active temperature control device is included in the optical package and resides in the space between the first and second portions of the header structure. Finally, an optical element, such as a laser, is provided that is arranged for thermal communication with the active temperature control device so that operation of the optical element can be controlled by way of the active temperature control device.
Abstract:
An optoelectronic assembly includes a transistor outline (TO) package that houses an optoelectronic device. The TO package and the optoelectronic device are coupled to a circuit interconnect. The circuit interconnect includes an insulator having a first side for transmitting a signal current between the optoelectronic device and a device external to the TO package, and a second side for transmitting a ground current between the TO package and the external device. For a predefined operating frequency range, the impedance of the circuit interconnect approximately matches the impedance of the signal leads of the TO package and also approximately matches the impedance of the device external to the TO package. The optoelectronic device may include a laser diode or a photo diode. In addition, the present invention is an optoelectronic transceiver including a transmitter optoelectronic assembly and a receiver optoelectronic assembly. The transmitter optoelectronic assembly includes a transmitter TO package and a transmitter circuit interconnect, and the receiver optoelectronic assembly includes a receiver TO package and a receiver circuit interconnect.
Abstract:
A compact laser package with integrated temperature control is disclosed. In one embodiment, the compact laser package that includes a housing, a window through the housing, a laser emitter disposed in the housing, and an active temperature control device disposed in the housing. The laser emitter is disposed on the active temperature control device and aligned such that optical signals generated by the laser emitter can be emitted through the window without a waveguide. Additionally, the housing has an outline similar to that of a transistor-can. Temperature measuring device and laser power detection device may also be integrated within the laser package.
Abstract:
A vertical cavity surface emitting laser (VCSEL) using photonic crystals with a central defect. At least one of the mirror layers of a VCSEL includes a photonic crystal with a central defect. The central defect, which is surrounded by a periodic structure of holes or cavities, permits laser light to propagate and exit the VCSEL. Semi-insulating regions are formed in the active region such that when cavities are drilled in the photonic crystal and penetrate the active region, the cavities pass through the semi-insulating regions. This reduces the surface recombination that would otherwise occur in the active region and prevents the threshold current from increasing. The photonic crystal with a central defect has a reflectivity that is wavelength dependent. The VCSEL thus emits a single mode.
Abstract:
An apparatus is disclosed wherein laser radiation illuminates a sample using all reflective optics and wherein in-elastically scattered light from the sample is collected using the identical elements. The apparatus obviates the problem of contaminating the laser radiation with unwanted spectra from transmissive optics while providing very high rejection of the laser radiation with respect to the in-elastically scattered light. In addition, the apparatus can collect and launch light with high numerical aperture and large field of view.
Abstract:
An apparatus comprising an optical window transmits both an excitation beam to a sample and scattered light from the sample which is within the angular range of the collection optics. Scattered light from the sample outside the angular range of the collection optics is re-directed back to the sample by reflection from one or more surfaces of the apparatus. As a result, the magnitude of scattered light collected is increased.
Abstract:
Vertical cavity surface emitting lasers are disclosed, one example of which includes a substrate upon which a lower mirror layer is formed. An active region and upper mirror layer are disposed, in that order, on the lower mirror layer. In particular, the upper mirror layer includes a plurality of DBR layers formed on the active region. The upper mirror layer additionally includes a photonic crystal formed on the plurality of DBR layers and having a periodic structure that contributes to the definition of a central defect. As a consequence of this structure, the photonic crystal has a reflectivity that is wavelength dependent, and the central defect enables the VCSEL to propagate a single mode.
Abstract:
A single mode high power vertical cavity surface emitting laser (VCSEL) using photonic crystals. A photonic crystal is included in at least one mirror layer of a VCSEL. The reflectivity of the photonic crystal is dependent on the wavelength and incident angle of the photons. The photonic crystal can be formed such that the VCSEL lases at a single mode. Because a single mode is generated, the aperture of the VCSEL can be enlarged to increase the power that is generated by the VCSEL for that mode. The photonic crystal can be used with or without DBR layers. The photonic crystal, in one example, forms an external cavity.