摘要:
A method of fabricating an isolated vertical transistor comprising the following steps. A wafer having a first implanted region selected from the group comprising a source region and a drain region is provided. The wafer further includes STI areas on either side of a center transistor area. The wafer is patterned down to the first implanted region to form a vertical pillar within the center transistor area using a patterned hardmask. The vertical pillar having side walls. A pad dielectric layer is formed over the wafer, lining the vertical pillar. A nitride layer is formed over the pad dielectric layer. The structure is patterned and etched through the nitride layer and the pad dielectric layer; and into the wafer within the STI areas to form STI trenches within the wafer. The STI trenches are filled with insulative material to form STIs within STI trenches. The patterned nitride and pad dielectric layers are removed. The patterned hardmask is removed. Gate oxide is grown over the exposed portions of the wafer and the vertical pillar. Spacer gates are formed over the gate oxide lined side walls of the vertical pillar. Spacer gate implants are formed within the spacer gates, and a second implanted region is formed within the vertical pillar selected from the group consisting of a drain region and a source region that is not the same as the first implanted region to complete formation of the isolated vertical transistor.
摘要:
A method for a self aligned TX with elevated source/drain (S/D) regions on an insulated layer (oxide) by forming a trench along side the STI and filling the trench with oxide. STI regions are formed in a substrate. A gate structure is formed. LDD regions are formed adjacent to the gate structure in the substrate. Spacers are formed on the sidewall of the gate structure. We etch S/D trenches between the STI regions and the first spacers. The S/D trenches are filled with a S/D insulating layer. Elevated S/D regions are formed over the S/D insulating layer and the LDD regions. A top isolation layer is formed over the STI regions. The invention builds the raised source/drain (S/D) regions on an insulating layer and reduces junction leakage and hot carrier degradation to gate oxide.
摘要:
An improved MOS transistor and method of making an improved MOS transistor. An MOS transistor having a recessed source drain on a trench sidewall with a replacement gate technique. Holes are formed in the shallow trench isolations, which exposes sidewall of the substrate in the active area. Sidewalls of the substrate are doped in the active area where holes are. Conductive material is then formed in the holes and the conductive material becomes the source and drain regions. The etch stop layer is then removed exposing sidewalls of the conductive material, and oxidizing exposed sidewalls of the conductive material is preformed. Spacers are formed on top of the pad oxide and on the sidewalls of the oxidized portions of the conductive material. The pad oxide layer is removed from the structure but not from under the spacers. A gate dielectric layer is formed on the substrate in the active area between the spacers; and a gate electrode is formed on said gate dielectric layer.
摘要:
A method to form a MOS transistor with a narrow channel regions and a wide top (second) gate portion. A gate dielectic layer and a first gate layer are formed over a substrate. A second gate portion is formed over the first gate layer. Spacers are formed on the sidewalls of the second gate portion. In a critical step, we isotropically etch the first gate layer to undercut the second gate portion to form a first gate portion so that the first portion has a width less than the second gate portion. The spacers are removed. Lightly doped drains, sidewall spacers and source/drain regions are formed to complete the device.
摘要:
A method of fabrication of an elevated source/drain (S/D) for a MOS device. A first insulating layer having a gate opening and source/drain openings is formed over a substrate. We form a LDD resist mask having opening over the source/drain openings over the first insulating layer. Ions are implanted through the source/drain openings. A first dielectric layer is formed on the substrate in the gate opening and source/drain openings. A gate is formed in the gate opening and raised source/drain (S/D) blocks in the source/drain openings. We remove the spacer blocks to form spacer block openings. We form second LDD regions by implanting ions through the spacer block openings. We form second spacer blocks in the spacer block openings. Plug opening are formed through the raised source/drain (S/D) blocks. Contact plugs are formed in the form plug opening.
摘要:
A method of forming a gate electrode, comprising the following steps. A semiconductor substrate having an overlying patterned layer exposing a portion of the substrate within active area and patterned layer opening. The patterned layer having exposed sidewalls. Internal spacers are formed over a portion of the exposed substrate portion within the patterned layer opening on the patterned layer exposed sidewalls. The internal spacers being comprised of a WF1 material having a first work function. A planarized gate electrode body is formed within the remaining portion of the patterned layer opening and adjacent to the internal spacers. The gate electrode body being comprised of a WF2 material having a second work function. The internal spacers and the gate electrode body forming the gate electrode.
摘要:
A method for forming gate structures with smooth sidewalls by amorphizing the polysilicon along the gate boundaries is described. This method results in minimal gate depletion effects and improved critical dimension control in the gates of smaller devices. The method involves providing a gate silicon oxide layer on the surface of the semiconductor substrate. A gate electrode layer, such as polysilicon is deposited over the gate silicon oxide followed by a masking oxide layer deposited over the gate electrode layer. The masking oxide layer is patterned for the formation of the gate electrode. An ion implantation of silicon or germanium amorphizes the area of the polysilicon not protected by the masking oxide mask and also amorphizes the area along the boundaries of the polysilicon gate. Thereafter, the amorphized silicon is then removed by an anisotropic etch leaving a narrow area of amorphized silicon on the gate electrode sidewalls under the edges of the masking oxide mask completing the gate structure having smooth sidewalls.
摘要:
A CMOS RF device and a method to fabricate said device with low gate contact resistance are described. Conventional MOS transistor is first formed with isolation regions, poly-silicon gate structure, sidewall spacers around poly gate, and implanted source/drain with lightly and heavily doped regions. A silicon dioxide layer such as TEOS is deposited, planarized with chemical mechanical polishing (CMP) to expose the gate and treated with dilute HF etchant to recess the silicon dioxide layer below the surface of the gate. Silicon nitride is then deposited and planarized with CMP and then etched except around the gates, using a oversize poly-silicon gate mask. Inter-level dielectric mask is then deposited, contact holes etched, and contact metal is deposited to form the transistor. During contact hole etch over poly-silicon gate, silicon nitride around the poly gate acts as an etch stop. Resulting structure with direct gate contact achieves significantly reduced gate resistance and thereby improved noise performance at high frequency operation, increased unit power gain frequency (fmax), and reduced gate delay.
摘要:
A method is described to fabricate RF inductor devices on a silicon substrate. Low-k or other dielectric material is deposited and patterned to form inductor lower plate trenches. Trenches are lined with barrier film such as TaN, filled with copper, and excess metal planarized using chemical mechanical polishing (CMP). Second layer of a dielectric material is deposited and patterned to form via-hole/trenches. Via-hole/trench patterns are filled with barrier material, and the dielectric film in between the via-hole/trenches is etched to form a second set of trenches. These trenches are filled with copper and planarized. A third layer of a dielectric film is deposited and patterned to form via-hole/trenches. Via-hole/trenches are then filled with barrier material, and the dielectric film between via-hole/trench patterns etched to form a third set of trenches. These trenches are filled with copper metal and excess metal removed by CMP to form said RF inductor.
摘要:
A novel method to remove residual toxic gases trapped by a polymerizing process by an inert ion sputter is described. A masking layer is formed overlying a semiconductor substrate. An opening is etched through the masking layer into the semiconductor substrate whereby a polymer forms on sidewalls of the opening and whereby residual toxic gas reactants from gases used in the etching step are adsorbed by the polymer. Thereafter, the polymer is sputtered with non-reactive ions whereby the residual toxic gas reactants are desorbed from the polymer to complete removal of residual toxic gas reactants in the fabrication of an integrated circuit device.