Abstract:
Semiconductor die assemblies including stacked semiconductor dies having parallel plate capacitors formed between adjacent pairs of semiconductor dies in the stack, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor die assembly includes a first semiconductor die and a second semiconductor die stacked over the first semiconductor die. The first semiconductor die includes an upper surface having a first capacitor plate formed thereon, and the second semiconductor die includes a lower surface facing the upper surface of the first semiconductor die and having a second capacitor plate formed thereon. A dielectric material is formed at least partially between the first and second capacitor plates. The first capacitor plate, second capacitor plate, and dielectric material together form a capacitor that stores charge locally within the stack, and that can be accessed by the first and/or second semiconductor dies.
Abstract:
Semiconductor device packages include first and second semiconductor dice in a facing relationship. At least one group of solder bumps is substantially along a centerline between the semiconductor dice and operably coupled with integrated circuitry of the first and second semiconductor dice. Another group of solder bumps is laterally offset from the centerline and operably coupled only with integrated circuitry of the first semiconductor die. A further group of solder bumps is laterally offset from the centerline and operably coupled only with integrated circuitry of the second semiconductor die. Methods of forming semiconductor device packages include aligning first and second semiconductor dice with active surfaces facing each other, the first and second semiconductor dice each including bond pads along a centerline thereof and additional bond pads laterally offset from the centerline thereof.
Abstract:
This disclosure relates generally to interfaces between memory modules and circuit boards. More specifically, this disclosure relates to interfaces for coupling a memory module to a circuit board such that the memory module is arranged in a plane that is substantially parallel with a plane of the circuit board. Various embodiments disclosed herein include interfaces, memory modules including interfaces or portions of interfaces, and/or circuit boards including interfaces and/or portions of interfaces. Associated devices and systems are also disclosed.
Abstract:
This disclosure relates generally to interfaces between memory modules and circuit boards. More specifically, this disclosure relates to interfaces for coupling a memory module to a circuit board such that the memory module is arranged in a plane that is substantially parallel with a plane of the circuit board. Various embodiments disclosed herein include interfaces, memory modules including interfaces or portions of interfaces, and/or circuit boards including interfaces and/or portions of interfaces. Associated devices and systems are also disclosed.
Abstract:
Embodiments of the disclosure are drawn to apparatuses, systems, methods, and memories that are capable of performing pattern matching operations within a memory device. The pattern matching operations may be performed on data stored within the memory based on a pattern stored in a register. The result of the pattern matching operation may be provided by the memory. The data on which the pattern matching operation is performed may not be output from the memory during the pattern matching operation.
Abstract:
Methods, systems, and devices for power distribution for stacked memory are described. A memory die may be configured with one or more conductive paths for providing power to another memory die, where each conductive path may pass through the memory die but may be electrically isolated from circuitry for operating the memory die. Each conductive path may provide an electronic coupling between at least one of a first set of contacts of the memory die (e.g., couplable with a power source) and at least one of a second set of contacts of the memory die (e.g., couplable with another memory die). To support operations of the memory die, a contact of the first set may be coupled with circuitry for operating a memory array of the memory die, and to support operations of another memory die, another contact of the first set may be electrically isolated from the circuitry.
Abstract:
Methods, systems, and devices for voltage regulation distribution for stacked memory are described. A stacked memory device may support various techniques for coupling between voltage regulation circuitry of multiple memory dies, or for coupling of voltage regulation circuitry of some memory dies with circuitry associated with operating memory arrays of other memory dies. In some examples, such techniques may include cross-coupling of voltage regulation circuitry based on access activity or a degree of access activity for array circuitry. In some examples, such techniques may include isolating voltage regulation circuitry based on access activity or a degree of access activity for array circuitry. Dynamic coupling or isolation between voltage regulation circuitry may be supported by various signaling related to a stacked memory device, such as signaling between the stacked memory dies, signaling between a memory die and a central controller, or signaling between the stacked memory device and a host device.
Abstract:
Methods, systems, and devices for refresh-related activation in memory are described. A memory device may conduct a refresh operation to preserve the integrity of data. A refresh operation may be associated with a refresh time where the memory device is unable to execute or issue any commands (e.g., access commands). By posting (e.g., saving) one or more commands and/or row addresses during the refresh time, the memory device may be configured to execute the saved commands and/or re-open one or more rows associated with the saved row addresses at a later time (e.g., upon completion of the refresh operation). Accordingly, fewer commands may be issued to activate the memory cells after the refresh time.
Abstract:
Tracking circuitry may be used to determine if commands and/or command sequences include illegal commands and/or illegal command sequences. If the commands and/or command sequences include illegal commands and/or illegal command sequences, the tracking circuitry may activate signals that prevent execution of the commands and/or notice of the detected illegal commands and/or command sequences.
Abstract:
Embodiments of the disclosure are drawn to apparatuses, systems, methods for performing operations associated with machine learning. Machine learning operations may include processing a data set, training a machine learning algorithm, and applying a trained algorithm to a data set. Some of the machine learning operations, such as pattern matching operations, may be performed within a memory device.