摘要:
An optoelectronic semiconductor device includes a substrate, a semiconductor system having an active layer formed on the substrate and an electrode structure formed on the semiconductor system, wherein the layout of the electrode structure having at least a first conductivity type contact zone or a first conductivity type bonding pad, a second conductivity type bonding pad, a first conductivity type extension electrode, and a second conductivity type extension electrode wherein the first conductivity type extension electrode and the second conductivity type extension electrode have three-dimensional crossover, and partial of the first conductivity type extension electrode and the first conductivity type contact zone or the first conductivity type bonding pad are on the opposite sides of the active layer.
摘要:
A light emitting diode (LED) utilizes an adhesive layer to adhere a light emitting layer to a substrate. The LED further comprises an electrode buffer layer to enhance the adhesion between the electrode and the light emitting diode, and thus to improve the yield rate of the LED.
摘要:
A method for manufacturing a light-emitting device comprising the steps of cutting a light-emitting unit by a laser beam, and cleaning the light-emitting unit by an acid solution to remove by-products resulted from the laser cutting.
摘要:
An optoelectronical semiconductor device having a bonding structure comprises a first optoelectronical structure, a second optoelectronical structure, and a transparent bonding structure formed in-between.
摘要:
A light emitting device includes a micro-reflection structure carrier, which is formed by performing etching process on a carrier, a reflection layer, a light emitting layer, and a transparent adhesive layer, wherein the reflection layer is formed over the micro-reflection structure carrier and adheres to the light emitting layer through the transparent adhesive layer.
摘要:
A tube type light emitting diode light source including a light source generator, a light guide and a diffuser is provided. The light source generator includes LEDs arranging in a line. The light guide has a grooved light incident surface and a grooved light-guiding surface. The grooved light incident surface encompasses the LEDs, and the grooved light-guiding surface is adapted for changing the propagating direction of an incident light. The diffuser covers the light guide.
摘要:
A semiconductor light-emitting element assembly, comprising a composite substrate, a circuit layout carrier, a connecting structure, a recess, and a semiconductor light-emitting element, is disclosed. The connecting structure is used for bonding the composite substrate with the circuit layout carrier. The recess is formed by the circuit layout carrier and extends toward the composite substrate. The semiconductor light-emitting element is deposited in the recess and electrically connected to the circuit layout carrier.
摘要:
The present invention is related to a light emitting diode having an adhesive layer provided with heat paths. In the present invention, an adhesive layer is formed to bond the substrate and the LED stack. There are a plurality of metal protrusions or semiconductor protrusions passing through the adhesive layer to form heat-dissipation paths to improve the heat-dissipation effect of the LED so as to enhance the stability and the light-emitting efficiency of the LED.
摘要:
A light emitting diode having a transparent substrate and a method for manufacturing the same. The light emitting diode is formed by creating two semiconductor multilayers and bonding them. The first semiconductor multilayer is formed on a non-transparent substrate. The second semiconductor multilayer is created by forming an amorphous interface layer on a transparent substrate. The two semiconductor multilayers are bonded and the non-transparent substrate is removed, leaving a semiconductor multilayer with a transparent substrate.
摘要:
An LED includes an insulating substrate; a buffer layer positioned on the insulating substrate; an n+-type contact layer positioned on the buffer layer, the contact layer having a first surface and a second surface; an n-type cladding layer positioned on the first surface of the n+-type contact layer; a light-emitting layer positioned on the n-type cladding layer; a p-type cladding layer positioned on the light-emitting layer; a p-type contact layer positioned on the p-type cladding layer; an n+-type reverse-tunneling layer positioned on the p-type contact layer; a p-type transparent ohmic contact electrode positioned on the n+-type reverse-tunneling layer; and an n-type transparent ohmic contact electrode positioned on the second surface of the n+-type contact layer. The p-type transparent ohmic contact electrode and the n-type transparent ohmic contact electrode are made of the same materials.