Abstract:
A bi-level lamp ballast to selectively operate two lamps is provided. The ballast includes a control circuit having an input, connected to a switching network, and an output, which provides a particular control signal based on the state of the switching network. The ballast also includes respective lamp control switches, each having respective outputs. The first switch is connected to the output and a ballast power supply. In its first state, it connects the ballast power supply to its first output, and in its second state, it connects the ballast power supply to its second output. The second switch is connected to the output and a ground. In its first state, it connects the ground to its first output, and in its second state, it connects the ground to its second output. The state of each lamp control switch depends on the control signal generated by the control circuit.
Abstract:
A lighting system converter circuit of a lamp power converter to selectively operate a plurality of lamps connected thereto is provided. The lighting system converter circuit includes a first impedance circuit and a second impedance circuit. Each impedance circuit includes an input terminal, an impedance component, and a switching network. The impedance components are each configured to connect in series with the lamps. Each input terminal is configured to receive a control signal that indicates a state of a switch. Each control signal has a first logic level, indicating the switch is non-conductive, and a second logic level, indicating the switch is conductive. Each switching network is connected to its respective input terminal and in parallel with its respective impedance component, and is configured to selectively operate between a conductive state and a non-conductive state, as a function of the logic level of its respective control signal.
Abstract:
Techniques are described for maintaining a forwarding information base (FIB) within a packet-forwarding engine (PFE) of a router, and programming a packet-forwarding integrated circuit (IC) with a hardware version of the FIB. Entries of the hardware version identify primary forwarding next hops and backup forwarding next hops for the LSPs, wherein the packet-forwarding IC includes a control logic module and internal selector block configured to produce a value indicating a state of the first physical link. The selector block outputs one of the primary forwarding next hop and the backup forwarding next hop of the entries for forwarding the MPLS packets based on the value in response to the packet-processing engine addressing one of the entries of the FIB for the LSPs. Packets are forwarded with the PFE to the one of the primary forwarding next hop and the backup forwarding next hop output by the selector block.
Abstract:
Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
Abstract:
A circuit or combined ballast for driving a fluorescent lamp and at least one light emitting diode (LED) includes an integrated driver circuit having an alternating current (AC) circuit that includes at least one ballast coil for driving the fluorescent lamp and a direct current circuit for driving the LED having a secondary winding inductively coupled with the fluorescent lamp ballast coil for driving the LED. A method of driving a lamp assembly includes at least one fluorescent lamp and at least one light emitting diode (LED) and a combined driver circuit for supplying both the fluorescent lamp and the LED. The combined driver circuit supplies high voltage AC supply to a first portion of the driver circuit to the fluorescent lamp, supplies low voltage DC supply in a second portion of the driver circuit to the LED, and provides a secondary winding in the second portion of the driver circuit that is inductively coupled with a ballast coil in the first portion of the driver circuit that drives the fluorescent lamp.
Abstract:
Combinatorial processing including rotation and movement within a region is described, including defining multiple regions of at least one substrate, processing the multiple regions of the at least one substrate in a combinatorial manner, rotating a head in one of the multiple regions to perform the processing, and repositioning the head relative to the one of the multiple regions while rotating the head during the processing.
Abstract:
Methods of modifying a patterned semiconductor substrate are presented including: providing a patterned semiconductor substrate surface including a dielectric region and a conductive region; and applying an amphiphilic surface modifier to the dielectric region to modify the dielectric region. In some embodiments, modifying the dielectric region includes modifying a wetting angle of the dielectric region. In some embodiments, modifying the wetting angle includes making a surface of the dielectric region hydrophilic. In some embodiments, methods further include applying an aqueous solution to the patterned semiconductor substrate surface. In some embodiments, the conductive region is selectively enhanced by the aqueous solution. In some embodiments, methods further include providing the dielectric region formed of a low-k dielectric material. In some embodiments, applying the amphiphilic surface modifier modifies an interaction of the low-k dielectric region with a subsequent process.
Abstract:
Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed by depositing a metal-containing material on a silicon-containing material. The metal-containing material may be oxidized to form a resistive-switching metal oxide. The silicon in the silicon-containing material reacts with the metal in the metal-containing material when heat is applied. This forms a metal silicide lower electrode for the nonvolatile memory element. An upper electrode may be deposited on top of the metal oxide. Because the silicon in the silicon-containing layer reacts with some of the metal in the metal-containing layer, the resistive-switching metal oxide that is formed is metal deficient when compared to a stoichiometric metal oxide formed from the same metal.
Abstract:
Described herein are technologies for overcoming technical problems associated with implementing a system for search and analysis of technical information over a computer network. For example, described herein are systems and methods for overcoming technical problems associated with implementing a system for search and analysis of scientific and engineering studies data over a computer network. With respect to some embodiments, described herein are technologies leveraging computer networking and a software architecture to overcome technical problems associated with implementing search and analysis systems for technical information.
Abstract:
A driver port that provides selectable output currents based on connections thereto, and a driver including the same, is provided. A plurality of shunt resistors are connected in series between a negative output of a driver and a ground. A driver port having a plurality of connection points is provided, each respective connection point connected to a different connection between two of the plurality of shunt resistors. A load including one or more solid state light sources is capable of being connected between one of the connection points of the driver port and a positive output of the driver.