Abstract:
An image sensor includes pixel circuitry with a photodiode to receive light and output a pixel signal. The image sensor also includes readout circuitry with a first sample and hold transistor coupled to the pixel circuitry, and a first capacitor coupled to the first sample and hold transistor to receive the pixel signal. A second sample and hold transistor is coupled to the pixel circuitry, and a second capacitor is coupled to the second sample and hold transistor to receive the pixel signal. A first output switch is coupled to output the pixel signal from the first capacitor, and a second output switch is coupled to output the pixel signal from the second capacitor. A boost transistor is coupled to connect the first output switch and the second output switch when the boost transistor is turned on.
Abstract:
An image sensor includes pixel circuitry with a photodiode to receive light and output a pixel signal. The image sensor also includes readout circuitry with a first sample and hold transistor coupled to the pixel circuitry, and a first capacitor coupled to the first sample and hold transistor to receive the pixel signal. A second sample and hold transistor is coupled to the pixel circuitry, and a second capacitor is coupled to the second sample and hold transistor to receive the pixel signal. A first output switch is coupled to output the pixel signal from the first capacitor, and a second output switch is coupled to output the pixel signal from the second capacitor. A boost transistor is coupled to connect the first output switch and the second output switch when the boost transistor is turned on.
Abstract:
A hybrid-bonded image sensor has a photodiode die with multiple macrocells; each macrocell has at least one photodiode and a coupling region. The coupling regions couple to a coupling region of a macrocell unit of a supporting circuitry die where they feed an input of an amplifier and a feedback capacitor. The feedback capacitor also couples to output of the amplifier, and the amplifier inverts between the input and the output. The method includes resetting a photodiode of the photodiode die; coupling signal from photodiode through the bond point to the supporting circuitry die to a feedback capacitor and to an input of the amplifier, the feedback capacitor also coupled to an inverting output of the amplifier; and amplifying the signal with the amplifier, where a capacitance of the feedback capacitor determines a gain of the amplifier.
Abstract:
An image sensor system, comprising: an image sensor including an image sensing pixel array; a supporting module; a ground line coupling the image sensor with the supporting module; a power line coupling the image sensor with the supporting module; a data/control line coupling the image sensor with the supporting module; and a clock line coupling the image sensor with the supporting module; wherein the ground line and the power line are based on electrical conduction, and wherein the clock line is based on fiber optics.
Abstract:
A pixel circuit includes a photodiode, and a transfer transistor coupled to the photodiode. A floating diffusion is coupled to the transfer transistor coupled to transfer image charge from the photodiode to the floating diffusion. An amplifier circuit includes an input coupled to the floating diffusion, an output coupled to generate an image data signal of the pixel circuit, and a variable bias terminal coupled to receive a variable bias signal. A reset switch is coupled between the output and input of the amplifier circuit to reset the amplifier circuit in response to a reset signal. A variable bias generator circuit is coupled to generate the variable bias signal in response to a reset signal to transition the variable bias signal from a first bias signal value to a second bias signal value in response to a transition of the reset signal from an active state to an inactive state.
Abstract:
An image sensor pixel includes a semiconductor layer, a photosensitive region to accumulate photo-generated charge, a floating node, a trench, and an entrenched transfer gate. The photosensitive region and the trench are disposed within the semiconductor layer. The trench extends into the semiconductor layer between the photosensitive region and the floating node and the entrenched transfer gate is disposed within the trench to control transfer of the photo-generated charge from the photosensitive region to the floating node.
Abstract:
A pixel cell includes a photodiode disposed within a first semiconductor chip for accumulating an image charge in response to light incident upon the photodiode. A transfer transistor is disposed within the first semiconductor chip and coupled to the photodiode to transfer the image charge from the photodiode. A bias voltage generation circuit disposed within a second semiconductor chip for generating a bias voltage. The bias voltage generation circuit is coupled to the first semiconductor chip to bias the photodiode with the bias voltage. The bias voltage is negative with respect to a ground voltage of the second semiconductor chip. A floating diffusion is disposed within the second semiconductor chip. The transfer transistor is coupled to transfer the image charge from the photodiode on the first semiconductor chip to the floating diffusion on the second semiconductor chip.
Abstract:
An image sensor array has a tiling unit comprising a source follower stage coupled to buffer signals from a photodiode when the unit is read onto a sense line, the source follower stage differs from conventional sensor arrays because it uses an N-channel transistor having a P-doped polysilicon gate. In embodiments, other transistors of the array have conventional N-channel transistors with N-doped polysilicon gates.
Abstract:
A programmable current source for use with a time of flight pixel cell includes a first transistor. A current through the first transistor is responsive to a gate-source voltage of the first transistor. A current control circuit is coupled to the first transistor and coupled to a reference current source to selectively couple a reference current of the reference current source through the first transistor during a sample operation. A sample and hold circuit is coupled to the first transistor to sample a gate-source voltage of the first transistor during the sample operation. The sample and hold circuit is coupled to hold the gate-source voltage during a hold operation after the sample operation substantially equal to the gate-source voltage during the sample operation. A hold current through the first transistor during the hold operation is substantially equal to the reference current.
Abstract:
A method of controlling a pixel array includes reading out image data from pixel cells of a row i of the pixel array with second transfer control signals that are coupled to be received by transfer transistors included in the pixels cells of the row of the pixel array that is being read out. Exposure times for pixel cells are independently controlled in other rows of the pixel array that are not being read out with first transfer control signals coupled to be received by transfer transistors included in the pixel cells in the other rows of the pixel array that are not being read out while the image data is read out from the pixel cells of row i of the pixel array.