摘要:
A method of making a memristor having an embedded switching layer include exposing a surface portion of a first electrode material within a via to a reactive species to form the switching layer embedded within and at surface of the via. The via is in contact with a first conductor trace. The method further includes depositing a layer of a second electrode material adjacent to the via surface and patterning the layer into a column aligned with the via. The method further includes depositing an interlayer dielectric material to surround the column and providing a second conductor trace in electrical contact with the second electrode material of the column.
摘要:
A nanoscale switching device comprises a first electrode of a nanoscale width; a second electrode of a nanoscale width; an active region disposed between the first and second electrodes, the active region containing a switching material; an area within the active region that constrains current flow between the first electrode and the second electrode to a central portion of the active region; and an interlayer dielectric layer formed of a dielectric material and disposed between the first and second electrodes outside the active region. A nanoscale crossbar array and method of forming the nanoscale switching device are also disclosed.
摘要:
A memory array with graded resistance lines includes a first set of lines intersecting a second set of lines. A line from one of the sets of lines includes a graded resistance along a length of the line.
摘要:
An aspect of the present invention is a thin film device. The thin film device includes at least one patterned thin film layer, a thermally conductive material coupled to at least one of the patterned thin-film layer and an electrically and thermally isolating material in contact with the thermally conductive material.
摘要:
An exemplary array of thermally-assisted magnetic memory structures includes a plurality of magnetic memory elements, each magnetic memory element being near a diode. A diode near a selected magnetic memory element can be heated by absorbing energy from a radio frequency electromagnetic field. The heated diode can be used to elevate the temperature of the selected magnetic memory element to thermally assist in switching the magnetic state of the magnetic memory element upon application of a write current.
摘要:
A coupled ferromagnetic structure includes a first ferromagnetic layer, a spacer layer on a first surface of the first ferromagnetic layer, and a second ferromagnetic layer on the spacer layer. Interlayer exchange coupling occurs between the first and second ferromagnetic layers. The coupling may be ferromagnetic or antiferromagnetic. Morphology of the first surface is modified to tailor the interlayer exchange coupling. The structure may form a part of a magnetoresistive device such as a magnetic tunnel junction.
摘要:
A magnetic memory cell includes a first magneto-resistive device and a second magneto-resistive device. The first magneto-resistive device has a first sense layer. The second magneto-resistive device is connected in series with the first magneto-resistive device. The second magneto-resistive device has a second sense layer. At least one controlled nucleation site is placed on at least one of the first sense layer and the second sense layer.
摘要:
A ferromagnetic data layer of a magnetic memory element is formed with a controlled nucleation site. In some embodiments, the nucleation site may be a divot in the data layer or a protrusion from the data layer. A Magnetic Random Access Memory (“MRAM”) device may include an array of magnetic memory elements having data layers with controlled nucleation sites.
摘要:
A ferromagnetic data layer of a magnetic memory element is formed with a controlled nucleation site. The controlled nucleation sites improve the switching distribution of the magnetic memory elements, which increases reliability of writing to the magnetic memory elements. A Magnetic Random Access Memory (MRAM) device may include an array of such magnetic memory elements.