Abstract:
In a stand-alone snapback NMOS ESD protection structure method of manufacturing, the breakdown voltage is reduced and the structure is made more resilient to hot carrier and soft leakage degradation in the gate region by blocking the NLDD and partially blocking the n+ drain region between the gate and drain region.
Abstract:
The linear tuning range of a semiconductor varactor is substantially increased by forming a lightly-doped drain region of a first conductivity type in a semiconductor material of a second conductivity type between a heavily-doped diffusion of the second conductivity type and a lower-plate region of the semiconductor material.
Abstract:
In an ESD protection circuit for an analog bipolar circuit, the avalanche breakdown voltage of a reverse-coupled NPN BJT acting as an avalanche diode is adjusted to comply with breakdown voltage and latchup requirements by including a resistor between the base and collector of the BJT.
Abstract:
Adjacent metal lines of an interconnect metallization layer exhibit reduced variation in parasitic capacitance due to the presence of an intervening third metal line. The third metal line is electrically linked to one of the adjacent metal lines and is designed to project into the space between the adjacent metal lines, thereby elevating parasitic capacitance while reducing the range of variation of parasitic capacitance over a known range of critical dimensions. Thickness of the interlayer dielectric formed over the adjacent metal lines can be tailored to trigger penetration of the third metal line within a known range of critical dimensions.
Abstract:
Process for forming physical gate length dependent implanted regions in a semiconductor substrate. The process includes steps of first providing a semiconductor substrate (e.g. a silicon wafer) with a gate oxide layer on its surface, followed by the formation of a polysilicon gate layer on the gate oxide layer. An additional oxide layer is subsequently formed on the polysilicon gate layer. The resulting oxide/polysilicon stack is then patterned to form a patterned oxide/polysilicon stack layer that includes a patterned additional oxide layer and a patterned polysilicon gate layer. Next, a conformal silicon nitride layer is formed over the patterned oxide/polysilicon stack layer. The conformal silicon nitride layer is then etched (e.g. by an anisotropic etch) to form silicon nitride spacers on the sidewalls of the patterned oxide/polysilicon stack layer. After removal of the patterned additional oxide layer to leave the silicon nitride spacers extending above the patterned polysilicon gate layer, an additional polysilicon layer is deposited. The additional polysilicon layer is then etched (e.g. by an anisotropic plasma etch) to create dual (i.e. internal and external) polysilicon spacers on the sidewalls of the silicon nitride spacers. Next, dopant atoms (e.g. dopant atoms chosen to serve as a physical gate length dependent V.sub.T adjust implant) are implanted, through the patterned polysilicon gate layer, into the semiconductor substrate to create an implanted region while using the dual polysilicon spacers (the pitch and profile of their internal portions being dependent on the physical gate length) as an implant mask.
Abstract:
The cost and size of an atomic magnetometer are reduced by attaching together a first die which integrates together a vapor cell, top and side photo detectors, and processing electronics, a second die which integrates together an optics package and a heater for the vapor cell, and a third die which integrates together a VCSEL, a heater for the VCSEL, and control electronics.
Abstract:
A laminated magnetic core, which has a number of magnetic layers and a number of insulation layers which are arranged so that an insulation layer lies between each vertically adjacent pair of magnetic layers, is formed in a method that forms the magnetic layers with an electroplating process, and the insulation layers with a sputter depositing process.
Abstract:
A DMOS transistor with a lower on-state drain-to-source resistance and a higher breakdown voltage utilizes a slanted super junction drift structure that lies along the side wall of an opening with the drain region at the bottom of the opening and the source region near the top of the opening.
Abstract:
The cost and size of an atomic magnetometer are reduced by attaching a vapor cell structure that has a vapor cell cavity to a base die that has a laser light source that outputs light to the vapor cell cavity, and attaching a photo detection die that has a photodiode to the vapor cell structure to detect light from the laser light source that passes through the vapor cell cavity.
Abstract:
A giant magneto-impedance (GMI) magnetometer is formed in a semiconductor wafer fabrication sequence, which significantly reduces the size and cost of the GMI magnetometer. The semiconductor wafer fabrication sequence forms a magnetic conductor, a non-magnetic conductor that is wrapped around the magnetic conductor as a coil, and non-magnetic conductors that touch the opposite ends of the magnetic conductor.