Abstract:
A memory device comprising a programmable command-and-address (CA) interface and/or a programmable data interface is described. In an operational mode, two or more CA interfaces may be active. In another operational mode, at least one, but not all, CA interfaces may be active. In an operational mode, all of the data interfaces may be active. In another operational mode, at least one, but not all, data interfaces may be active. The memory device can include circuitry to select: an operational mode; a sub-mode within an operational mode; one or more CA interfaces as the active CA interface(s); a main CA interface from multiple active CA interfaces; and/or one or more data interfaces as the active data interfaces. The circuitry may perform these selection(s) based on one or more bits in one or more registers and/or one or more signals received on one or more pins.
Abstract:
A system has a plurality of memory devices arranged in a fly-by topology, each having on-die termination (ODT) circuitry for connecting to an address and control (RQ) bus. The ODT circuitry of each memory device includes a set of one or more control registers for controlling on-die termination of one or more signal lines of the RQ bus. A memory controller sends register values, for storage in a plurality of registers of a respective memory device. The register values include register values that represent one or more impedance values of on-die termination (ODT) impedances to apply to the respective inputs of the respective memory device that receive the CA signals, and one or more register values to selectively enable application of a chip select ODT impedance to the chip select input of the respective memory device.
Abstract:
A memory device comprising a programmable command-and-address (CA) interface and/or a programmable data interface is described. In an operational mode, two or more CA interfaces may be active. In another operational mode, at least one, but not all, CA interfaces may be active. In an operational mode, all of the data interfaces may be active. In another operational mode, at least one, but not all, data interfaces may be active. The memory device can include circuitry to select: an operational mode; a sub-mode within an operational mode; one or more CA interfaces as the active CA interface(s); a main CA interface from multiple active CA interfaces; and/or one or more data interfaces as the active data interfaces. The circuitry may perform these selection(s) based on one or more bits in one or more registers and/or one or more signals received on one or more pins.
Abstract:
A system has a plurality of memory devices arranged in a fly-by topology, each having on-die termination (ODT) circuitry for connecting to an address and control (RQ) bus. The ODT circuitry of each memory device includes a set of one or more control registers for controlling on-die termination of one or more signal lines of the RQ bus. A first memory device includes a first set of one or more control registers storing a first ODT value, for controlling termination of one or more signal lines of the RQ bus by the ODT circuitry of the first memory device, and a second memory device includes a second set of one or more control registers storing a second ODT value different from the first ODT value, for controlling termination of one or more signal lines of the RQ bus by the ODT circuitry of the second memory device.
Abstract:
A structure for delivering power is described. In some embodiments, the structure can include conductors disposed on two or more layers. Specifically, the structure can include a first set of interdigitated conductors disposed on a first layer and oriented substantially along an expected direction of current flow. At least one conductor in the first set of interdigitated conductors may be maintained at a first voltage, and at least one conductor in the first set of interdigitated conductors may be maintained at a second voltage, wherein the second voltage is different from the first voltage. The structure may further include a conducting structure disposed on a second layer, wherein the second layer is different from the first layer, and wherein at least one conductor in the conducting structure is maintained at the first voltage.
Abstract:
A memory device comprising a programmable command-and-address (CA) interface and/or a programmable data interface is described. In an operational mode, two or more CA interfaces may be active. In another operational mode, at least one, but not all, CA interfaces may be active. In an operational mode, all of the data interfaces may be active. In another operational mode, at least one, but not all, data interfaces may be active. The memory device can include circuitry to select: an operational mode; a sub-mode within an operational mode; one or more CA interfaces as the active CA interface(s); a main CA interface from multiple active CA interfaces; and/or one or more data interfaces as the active data interfaces. The circuitry may perform these selection(s) based on one or more bits in one or more registers and/or one or more signals received on one or more pins.
Abstract:
A system has a plurality of memory devices arranged in a fly-by topology, each having on-die termination (ODT) circuitry for connecting to an address and control (RQ) bus. The ODT circuitry of each memory device includes a set of one or more control registers for controlling on-die termination of one or more signal lines of the RQ bus. A first memory device includes a first set of one or more control registers storing a first ODT value, for controlling termination of one or more signal lines of the RQ bus by the ODT circuitry of the first memory device, and a second memory device includes a second set of one or more control registers storing a second ODT value different from the first ODT value, for controlling termination of one or more signal lines of the RQ bus by the ODT circuitry of the second memory device.
Abstract:
A memory control component outputs a memory write command to a memory IC and also outputs write data to be received via data inputs of the memory IC. Prior to reception of the write data within the memory IC, the memory control component asserts a termination control signal that causes the memory IC to apply to the data inputs a first on-die termination impedance during reception of the write data followed by a second on-die termination impedance after the write data has been received. The memory control component deasserts the termination control signal to cause the memory IC to apply no termination impedance to the data inputs.
Abstract:
An identifier value stored within a programmable register of a memory device is compared with a selector address received, together with a memory access command, via a signaling interface having at least one I/O node coupled to a bidirectional signaling line. On-die termination circuitry is transitioned between first and second states or maintained in one or the other of the first and second states based, at least in part, on whether the selector address matches the identifier value, with transition to the first state including switchably coupling a first termination resistance between the I/O node and a supply voltage line.
Abstract:
On-die termination circuitry within a non-volatile memory device applies a first termination resistance to an I/O node in response to a data storage command indicating that a data signal conveyed on a bidirectional signaling line is to be received within the non-volatile memory device via the I/O node, and applies a second termination resistance to the I/O node in response to information indicating that another memory device is to output a data signal onto the bidirectional signaling line.