Abstract:
Disclosed are hybrid synthesis gas conversion catalysts containing at least one Fischer-Tropsch component and at least one acidic component deposited on a monolith catalyst support for use in synthesis gas conversion processes and methods for preparing the catalysts. Also disclosed are synthesis gas conversion processes in which the hybrid synthesis gas conversion catalysts are contacted with synthesis gas to produce a hydrocarbon product containing at least 50 wt % C5+ hydrocarbons. Also disclosed are synthesis gas conversion processes in which at least one layer of Fischer-Tropsch component deposited onto a monolith support is alternated with at least one layer of acidic component in a fixed bed reactor.
Abstract:
The disclosure relates to a method of performing a synthesis gas conversion reaction in which synthesis gas contacts a catalyst system including a mixture of ruthenium loaded Fischer-Tropsch catalyst particles and at least one set of catalyst particles including an acidic component promoted with a noble metal, e.g., Pt or Pd. The reaction occurs at conditions resulting in a hydrocarbons product containing 1-15 weight % CH4, 1-15 weight % C2-C4, 70-95 weight % C5+, 0-5 weight % C21+ normal paraffins, and 0-10 weight % aromatic hydrocarbons.
Abstract:
Disclosed is a method of forming a hybrid Fischer-Tropsch catalyst extrudate for use in synthesis gas conversion reactions. The method includes extruding a mixture of ruthenium loaded metal oxide support particles, particles of an acidic component and a binder sol to form an extrudate. The resulting extrudate contains from about 0.1 to about 15 weight percent ruthenium based on the weight of the extrudate. In a synthesis gas conversion reaction, the extrudate is contacted with a synthesis gas having a H2 to CO molar ratio of 0.5 to 3.0 at a reaction temperature of 160° C. to 300° C., a total pressure of 3 to 35 atmospheres, and an hourly space velocity of 5 to 10,000 v/v/hour, resulting in hydrocarbon products containing 1-15 weight % CH4; 1-15 weight % C2-C4; 70-95 weight % C5+; 0-5 weight % C21+ normal paraffins; and 0-10 weight % aromatic hydrocarbons.
Abstract:
Disclosed is a process for converting synthesis gas to liquid hydrocarbon mixtures useful in the production of fuels and petrochemicals. The synthesis gas is contacted with at least two layers of synthesis gas conversion catalyst wherein each synthesis gas conversion catalyst layer is followed by a layer of hydrocracking catalyst and hydroisomerization catalyst or separate layers of hydrocracking and hydroisomerization catalysts. The process can occur within a single reactor, at an essentially common reactor temperature and an essentially common reactor pressure. The process provides a high yield of naphtha range liquid hydrocarbons and a low yield of wax.
Abstract:
A method for forming a catalyst for synthesis gas conversion and a synthesis gas conversion process impregnating a zeolite support wherein the catalyst contains ruthenium on a zeolite support, such as ZSM-5, ZSM-12, SSZ-32 or beta zeolite, and the product stream has less than 1 weight % C21+.
Abstract:
A method is provided for converting synthesis gas to liquid hydrocarbon mixtures useful as distillate fuel and/or lube base oil containing no greater than about 25 wt % olefins and containing no greater than about 5 wt % C21+ normal paraffins. The synthesis gas is contacted with a synthesis gas conversion catalyst comprising a Fischer-Tropsch synthesis component and an acidic component in an upstream catalyst bed thereby producing a wax-free liquid containing a paraffin component and an olefin component. The olefin component is saturated by contacting the liquid with an olefin saturation catalyst in a downstream catalyst bed.
Abstract:
A process is disclosed for converting a feed comprising synthesis gas to liquid hydrocarbons within a single reactor at essentially common reaction conditions. The synthesis gas contacts a catalyst bed comprising a mixture of a synthesis gas conversion catalyst on a support containing an acidic component and a dual functionality catalyst including a hydrogenation component and a solid acid component. The hydrocarbons produced are liquid at about 0° C., contain at least 25% by volume C10+ and are substantially free of solid wax.
Abstract:
An amorphous support, methods for making the same and methods of using, particularly in hydrocracking. A method of making may comprise mixing a first amorphous material and a second amorphous material of different acidities to form a mixture, and treating by either separately treating the first and second amorphous materials before mixing or treating the mixture, so as to form an amorphous catalyst support. Treating preferably includes calcining. The acidity of the amorphous support may be modified by the different acidities of the precursor amorphous materials, their proportions in the mixture, and/or the order of the mixing and treating steps. A method of use may comprise reacting a hydrocarbon fraction with hydrogen over a hydrocracking catalyst comprising the amorphous catalyst support to form a hydrocracked product. Further embodiments include the first and second amorphous materials comprising silica-alumina, and/or differing in Brönsted acidity, Lewis acidity, or acidity index.
Abstract:
This invention relates to catalysts comprising a catalytic metal deposited on a composite support with well-dispersed chemical “anchor” species acting as nucleation centers for catalytic metal crystallites growth. The catalysts have the advantage that the average catalytic metal crystallite size can be controlled by the molar ratio of catalytic metal to chemical “anchor,” and is not limited by the porous structure of the support. A preferred embodiment comprises a cobalt-based catalyst on a silica-alumina support made by a co-gel method, wherein its average pore size can be controlled by the pH. The alumina species in the support most likely serve as chemical “anchors” to control the dispersion of cobalt species, such that the average cobalt crystallite size can be greater than the average pore size.
Abstract:
An effective catalyst includes an amorphous silica-alumina support having a bimodal pore size-distribution. The support may be prepared by a method that includes the physical mixing of two silica-alumina gels prepared so as to have two different average pore sizes. The catalyst has the advantage that both metal dispersion on the support and product diffusion in the pores are optimized. Further, the catalyst has improved performance in the production of hydrocarbons from synthesis gas.