Abstract:
Provided are a planar optical waveguide and a method of fabricating the same which is adapted to a planar optical component and an optical component for use in a optical communication. The planar optical waveguide includes: a lower cladding layer formed on a substrate, a core formed on the lower cladding layer, a dielectric layer covering the core, and an upper cladding layer formed on the lower cladding layer having the dielectric layer. By forming the dielectric layer having a low refractive index between the core and the clad, a difference of refractive indices between the core and the clad increases so that light is densely focused into the core, thereby forming a single mode having a strong energy to minimize a propagation loss.
Abstract:
Embodiments of the present invention are directed to shifting the resonant frequency in a high-frequency chip package away from an operational frequency by connecting a capacitance between an open-ended plating stub and ground. One embodiment provides a multi-layer substrate for interfacing a chip with a printed circuit board. A first outer layer provides a chip mounting location. A signal interconnect is spaced from the chip mounting location, and a signal trace extends from near the chip mounting location to the signal interconnect. A chip mounted at the chip mounting location may be connected to the signal trace by wirebonding. A plating stub extends from the signal interconnect, such as to a periphery of the substrate. A capacitor is used to capacitively couple the plating stub to a ground layer.
Abstract:
A constant velocity joint for a drive system includes an outer joint member and an inner joint member, each having a plurality of ball grooves, the ball grooves consisting of a first group of grooves of a skewed groove shape with a first skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of the outer and inner joint members, and a second group of grooves of a skewed groove shape with a second skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of the outer and inner joint members, the second skew angle less than the first skew angle. In addition to the differentiated skew angles, the contact angles of the balls in the first and second group of grooves may also be differentiated.
Abstract:
A constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair.
Abstract:
A constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair; and a cage having circumferentially displaced cage windows to accommodate a plurality of balls therein. The groove patterns of the ball grooves can be a combination of skewed grooves and non-linear grooves, a combination of non-linear grooves such as a curved groove or a compositely shaped groove, or a combination of linear grooves and non-linear grooves.
Abstract:
A multi layer interconnecting substrate has at least two spaced apart metal layers with a conductive pad on each one of the metal layers. Two different types of insulating layers are placed between the metal layers. The placement is such that one of the two different types of insulating layers is placed between the conductive pads and the other type of insulating layer is placed between the two spaced apart metal layers.
Abstract:
A multi layer interconnecting substrate has at least two spaced apart metal layers with a conductive pad on each one of the metal layers. Two different types of insulating layers are placed between the metal layers. The placement is such that one of the two different types of insulating layers is placed between the conductive pads and the other type of insulating layer is placed between the two spaced apart metal layers.
Abstract:
A constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair.
Abstract:
A system for providing power and ground vias for power distributions systems includes first and second conductive layers on a microelectronic package. The conductive layers may include one or more conductive components such as, but not limited to, power planes, ground planes, pads, traces, and the like for electrically connecting to electronic components. A via may electrically connect the first and second conductive layers. The via may have a cross-section of at least three partially-overlapping shapes. Each of the shapes partially overlaps at least two of the other shapes. The shapes may be, for example, circular, triangular, rectangular, square, polygonal, rhomboidal shape, or any other shape.
Abstract:
A dielectric resonator includes a dielectric block having an open surface at one of the surfaces thereof, the remaining surfaces being plated with a conductor. The dielectric block has an inner conductor hole formed at a surface of the dielectric block opposite to the open surface, the inner conductor hole extending a predetermined depth toward the open surface such that it does not perforate through the open surface. An electrode pattern is formed on the open surface such that it faces an end surface of the inner conductor hole, the electrode pattern being adapted to provide an input/output capacitor. The dielectric block has a coupling window formed on a predetermined portion of one of the surfaces of the dielectric block, except for the open surface and the surface formed with the inner conductor hole, at a position adjacent to one of the open surface and the surface formed with the inner conductor hole. The coupling window is free of the plated conductor and adapted to control a coupling degree of the resonator to another resonator. Other embodiments include integral type filters having resonators in a single dielectric block.