Abstract:
The present disclosure relates to a CMOS image sensor having a multiple deep trench isolation (MDTI) structure, and an associated method of formation. In some embodiments, the image sensor comprises a plurality of pixel regions disposed within a substrate and respectively comprising a photodiode configured to receive radiation that enters the substrate from a back-side. A boundary deep trench isolation (BDTI) structure is disposed at boundary regions of the pixel regions surrounding the photodiode. The BDTI structure extends from the back-side of the substrate to a first depth within the substrate. A multiple deep trench isolation (MDTI) structure is disposed at inner regions of the pixel regions overlying the photodiode. The MDTI structure extends from the back-side of the substrate to a second depth within the substrate smaller than the first depth. The MDTI structure is a continuous integral unit having a ring shape.
Abstract:
In some embodiments, a method is provided. The method includes forming a plurality of trenches in a semiconductor substrate, where the trenches extend into the semiconductor substrate from a back-side of the semiconductor substrate. An epitaxial layer comprising a dopant is formed on lower surfaces of the trenches, sidewalls of the trenches, and the back-side of the semiconductor substrate, where the dopant has a first doping type. The dopant is driven into the semiconductor substrate to form a first doped region having the first doping type along the epitaxial layer, where the first doped region separates a second doped region having a second doping type opposite the first doping type from the sidewalls of the trenches and from the back-side of the semiconductor substrate. A dielectric layer is formed over the back-side of the semiconductor substrate, where the dielectric layer fill the trenches to form back-side deep trench isolation structures.
Abstract:
The present disclosure, in some embodiments, relates to a method of forming an image sensor. The method includes implanting a dopant into a substrate to form a doped region and implanting one or more additional dopants into the substrate to form an image sensing element between the doped region and a front-side of the substrate. The doped region directly contacts a boundary of the image sensing element that is furthest from the front-side of the substrate. The method further includes etching the substrate to form one or more trenches extending into a back-side of the substrate. The back-side of the substrate opposes the front-side of the substrate. The method further includes filling the one or more trenches with one or more dielectric materials to form isolation structures.
Abstract:
The present disclosure relates to a CMOS image sensor having a photodiode surrounded by a back-side deep trench isolation (BDTI) structure, and an associated method of formation. In some embodiments, a plurality of pixel regions is disposed within a substrate and respectively comprising a photodiode. A back-side deep trench isolation (BDTI) structure is disposed between adjacent pixel regions, extending from a back-side of the substrate to a position within the substrate. The BDTI structure comprises a doped layer lining a sidewall surface of a deep trench and a dielectric fill layer filling a remaining space of the deep trench. By forming the disclosed BDTI structure that functions as a doped well and an isolation structure, the implantation processes from a front-side of the substrate is simplified, and thus the exposure resolution, the full well capacity of the photodiode, and the pinned voltage is improved.
Abstract:
In some embodiments, the present disclosure relates to a method of forming a back-side image (BSI) sensor. The method may be performed by forming an image sensing element within a substrate and forming a pixel-level memory node at a position within the substrate that is laterally offset from the image sensing element. A back-side of the substrate is etched to form one or more trenches that are laterally separated from the image sensing element by the substrate and that vertically overlie the pixel-level memory node. A reflective material is formed within the one or more trenches.
Abstract:
The present disclosure relates to an integrated circuit, and an associated method of formation. In some embodiments, the integrated circuit comprises a deep trench grid disposed at a back side of a substrate. A passivation layer lines the deep trench grid within the substrate. The passivation layer includes a first high-k dielectric layer and a second high-k dielectric layer disposed over the first high-k dielectric layer. A first dielectric layer is disposed over the passivation layer, lining the deep trench grid and extending over an upper surface of the substrate. A second dielectric layer is disposed over the first dielectric layer and enclosing remaining spaces of the deep trench grid to form air-gaps at lower portions of the deep trench grid. The air-gaps are sealed by the first dielectric layer or the second dielectric layer below the upper surface of the substrate.
Abstract:
In some embodiments, the present disclosure relates to a back-side image (BSI) sensor having a global shutter pixel with a reflective material that prevents contamination of a pixel-level memory node. In some embodiments, the BSI image sensor has an image sensing element arranged within a semiconductor substrate and a pixel-level memory node arranged within the semiconductor substrate at a location laterally offset from the image sensing element. A reflective material is also arranged within the semiconductor substrate at a location between the pixel-level memory node and a back-side of the semiconductor substrate. The reflective material has an aperture that overlies the image sensing element. The reflective material allows incident radiation to reach the image sensing element while preventing the incident radiation from reaching the pixel-level memory node, thereby preventing contamination of the pixel-level memory node.
Abstract:
In some embodiments, the present disclosure relates to a back-side image (BSI) sensor having a global shutter pixel with a reflective material that prevents contamination of a pixel-level memory node. In some embodiments, the BSI image sensor has an image sensing element arranged within a semiconductor substrate and a pixel-level memory node arranged within the semiconductor substrate at a location laterally offset from the image sensing element. A reflective material is also arranged within the semiconductor substrate at a location between the pixel-level memory node and a back-side of the semiconductor substrate. The reflective material has an aperture that overlies the image sensing element. The reflective material allows incident radiation to reach the image sensing element while preventing the incident radiation from reaching the pixel-level memory node, thereby preventing contamination of the pixel-level memory node.
Abstract:
A pad structure for a complementary metal-oxide-semiconductor (CMOS) image sensor is provided. A semiconductor substrate is arranged over a back end of line (BEOL) metallization stack, and comprises a scribe line opening. A buffer layer lines the scribe line opening. A conductive pad comprises a base region and a protruding region. The base region is arranged over the buffer layer in the scribe line opening, and the protruding region protrudes from the base region into the BEOL metallization stack. A dielectric layer fills the scribe line opening over the conductive pad, and is substantially flush with an upper surface of the semiconductor substrate. Further, a method for manufacturing the pad structure, as well as the CMOS image sensor, are provided.