Abstract:
In some embodiments, the present application provides a memory device. The memory device includes a chip that includes a magnetic random access memory (MRAM) cell. A magnetic-field-shielding structure comprised of conductive or magnetic material at least partially surrounds the chip. The magnetic-field-shielding structure comprises a sidewall region that laterally surrounds the chip, an upper region extending upward from the sidewall region, and a lower region extending downward from the sidewall region. At least one of the upper region and/or lower region terminate at an opening over the chip.
Abstract:
In some embodiments, the present application provides a magnetic memory device. The magnetic memory device comprises a bottom electrode, and a first synthetic anti-ferromagnetic (SyAF) layer including a first pinning layer and a second pinning layer disposed over the bottom electrode and having opposite magnetization directions and separated by a first spacer layer. The magnetic memory device further comprises a reference layer disposed over the first pair of pinning layers and a free layer disposed over the reference layer and separated from the reference layer by a tunneling barrier layer. The magnetic memory device further comprises a second synthetic anti-ferromagnetic (SyAF) layer including a third pinning layer and a fourth pinning layer disposed over the free layer and having opposite magnetization directions and separated by a second spacer layer.
Abstract:
The demand for increased performance and shrinking geometry from ICs has brought the introduction of multi-gate devices including finFET devices. Inducing a higher tensile strain/stress in a region provides for enhanced electron mobility, which may improve performance. High temperature processes during device fabrication tend to relax the stress on these strain inducing layers. In some embodiments, the present disclosure relates to a finFET device and its formation. A strain-inducing layer is disposed on a semiconductor fin between a channel region and a metal gate electrode. First and second inner spacers are disposed on a top surface of the strain-inducing layer and have inner sidewalls disposed along outer sidewalls of the metal gate electrode. First and second outer spacers have innermost sidewalls disposed along outer sidewalls of the first and second inner spacers, respectively. The first and second outer spacers cover outer sidewalls of the first and second inner spacers.
Abstract:
In a method of manufacturing a gate-all-around field effect transistor, a trench is formed over a substrate. Nano-tube structures are arranged into the trench, each of which includes a carbon nanotube (CNT) having a gate dielectric layer wrapping around the CNT and a gate electrode layer over the gate dielectric layer. An anchor layer is formed in the trench. A part of the anchor layer is removed at a source/drain (S/D) region. The gate electrode layer and the gate dielectric layer are removed at the S/D region, thereby exposing a part of the CNT at the S/D region. An S/D electrode layer is formed on the exposed part of the CNT. A part of the anchor layer is removed at a gate region, thereby exposing a part of the gate electrode layer of the gate structure. A gate contact layer is formed on the exposed part of the gate electrode layer.
Abstract:
The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate having a first region and a second region; a first fin active region of a first semiconductor material disposed within the first region, oriented in a first direction, wherein the first fin active region has a crystalline direction along the first direction; and a second fin active region of a second semiconductor material disposed within the second region and oriented in the first direction, wherein the second fin active region has a crystalline direction along the first direction.
Abstract:
The demand for increased performance and shrinking geometry from ICs has brought the introduction of multi-gate devices including finFET devices. Inducing a higher tensile strain/stress in a region provides for enhanced electron mobility, which may improve performance. High temperature processes during device fabrication tend to relax the stress on these strain inducing layers. The present disclosure relates to a method of forming a strain inducing layer or cap layer at the RPG (replacement poly silicon gate) stage of a finFET device formation process. In some embodiments, the strain inducing layer is doped to reduce the external resistance.
Abstract:
The present disclosure relates to a method of forming a transistor device having a carbon implantation region that provides for a low variation of voltage threshold, and an associated apparatus. The method is performed by forming a well region within a semiconductor substrate. The semiconductor substrate is selectively etched to form a recess within the well region. After formation of the recess, a carbon implantation is selectively performed to form a carbon implantation region within the semiconductor substrate at a position underlying the recess. An epitaxial growth is then performed to form one or more epitaxial layers within the recess at a position overlying the carbon implantation region. Source and drain regions are subsequently formed within the semiconductor substrate such that a channel region, comprising the one or more epitaxial layers, separates the source/drains from one another.
Abstract:
A multi-gate semiconductor device and method for forming the same. A multi-gate semiconductor device is formed including a first fin of a first transistor formed on a semiconductor substrate having a first dopant type. The first transistor has a doped channel region of the first dopant type. The device also includes a second fin of a second transistor formed on the first dopant type semiconductor substrate. The second transistor has a doped channel region of a second dopant type. The device further includes a gate electrode layer of the second dopant type formed over the channel region of the first fin and a gate electrode layer of the first dopant type formed over the channel region of the second fin.
Abstract:
Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary device includes a channel layer, a first source/drain feature, a second source/drain feature, and a metal gate. The channel layer has a first horizontal segment, a second horizontal segment, and a vertical segment connects the first horizontal segment and the second horizontal segment. The first horizontal segment and the second horizontal segment extend along a first direction, and the vertical segment extends along a second direction. The vertical segment has a width along the first direction and a thickness along the second direction, and the thickness is greater than the width. The channel layer extends between the first source/drain feature and the second source/drain feature along a third direction. The metal gate wraps channel layer. In some embodiments, the first horizontal segment and the second horizontal segment are nanosheets.
Abstract:
A semiconductor device includes semiconductor channel members disposed over a substrate, a gate dielectric layer disposed on and wrapping around the semiconductor channel members, a gate electrode layer disposed on the gate dielectric layer and wrapping around the semiconductor channel members, a source/drain (S/D) epitaxial layer in physical contact with the semiconductor channel members, and a dielectric spacer interposing the S/D epitaxial layer and the gate dielectric layer. The dielectric spacer includes a first dielectric layer in physical contact with the gate dielectric layer and a second dielectric layer in physical contact with the first dielectric layer. The first dielectric layer has a dielectric constant higher than that of the second dielectric layer. The second dielectric layer separates the first dielectric layer from physically contacting the S/D epitaxial layer.