Abstract:
A patterning method is disclosed. A hard mask layer, a lower pattern transfer layer, an upper pattern transfer layer are formed on a target layer. A first SARP process is performed to pattern the upper pattern transfer layer into an upper pattern mask. A second SARP process is performed to pattern the lower pattern transfer layer into a lower pattern mask. The upper pattern mask and the lower pattern mask define hole patterns. The hole patterns is filled with a dielectric layer. The dielectric layer and the upper pattern mask are etched back until the lower pattern mask is exposed. The lower pattern mask is removed, thereby forming island patterns. Using the island patterns as an etching hard mask, the hard mask layer is patterned into hard mask patterns. Using the hard mask patterns as an etching hard mask, the target layer is patterned into target patterns.
Abstract:
A method of forming a patterned structure is provided in the present invention. A hard mask layer is formed on a material layer before a first etching process and a second etching process for forming a first opening and a second opening partially overlapping with each other in the hard mask layer. The hard mask layer having the first opening and the second opening is then used in a third etching process performed to the material layer. A fourth etching process is performed to the hard mask layer and a dielectric layer disposed under the material layer after the third etching process. The material of the hard mask layer is identical to the material of the dielectric layer, and the fourth etching process may be used to remove the hard mask layer and form a trench in the dielectric layer accordingly.
Abstract:
A semiconductor device and method of forming the same, the semiconductor device includes bit lines, a transistor, a dielectric layer, plugs and a capping layer. The bit lines are disposed on a substrate within a cell region thereof, and the transistor is disposed on the substrate within a periphery region. The plugs are disposed in the dielectric layer, within the cell region and the periphery region respectively. The capping layer is disposed on the dielectric layer, and the capping layer disposed within the periphery region is between those plugs. That is, a portion of the dielectric layer is therefore between the capping layer and the transistor.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a plurality of gate structures on the substrate; forming a first stop layer on the gate structures; forming a second stop layer on the first stop layer; forming a first dielectric layer on the second stop layer; forming a plurality of first openings in the first dielectric layer to expose the second stop layer; forming a plurality of second openings in the first dielectric layer and the second stop layer to expose the first stop layer; and removing part of the second stop layer and part of the first stop layer to expose the gate structures.
Abstract:
A static random access memory unit cell layout structure is disclosed, in which a slot contact is disposed on one active area and another one across from the one. A static random access memory unit cell structure and a method of fabricating the same are also disclosed, in which, a slot contact is disposed on drains of a pull-up transistor and a pull-down transistor, and a metal-zero interconnect is disposed on the slot contact and a gate line of another pull-up transistor. Accordingly, there is not an intersection of vertical and horizontal metal-zero interconnects, and there is no place suffering from twice etching. Leakage junction due to stitch recess can be avoided.
Abstract:
A method of performing an etching process is provided. A substrate is provided, wherein a first region and a second region are defined on the substrate, and an overlapping region of the first region and the second region is defined as a third region. A tri-layer structure comprising an organic layer, a bottom anti-reflection coating (BARC), and a photoresist layer is formed on the substrate. The photoresist layer and the BARC in the second region are removed. An etching process is performed to remove the organic layer in the second region by using the BARC and/or the photoresist layer as a mask, wherein the etching process uses an etchant comprises CO2.
Abstract:
A method for forming a semiconductor structure having an opening is provided. First, a substrate is provided, wherein a first region and a second region are defined on the substrate and an overlapping area of the first region and the second region is defined as a third region. A pattern density of the first region is substantially greater than that of the second region. Then, a material layer is formed on the substrate. A first hard mask and a second hard mask are formed on the material layer. The first hard mask in the first region is removed to form a patterned first hard mask. The second hard mask in the third region is removed to form a patterned second hard mask. Lastly, the material layer is patterned by using the patterned second hard mask layer as a mask to form at least an opening in the third region only.
Abstract:
A method of forming a semiconductor device is provided. At least one gate structure including a dummy gate is formed on a substrate. A contact etch stop layer and a dielectric layer are formed to cover the gate structure. A portion of the contact etch stop layer and a portion of the dielectric layer are removed to expose the top of the gate structure. A dry etching process is performed to remove a portion of the dummy gate of the gate structure. A hydrogenation treatment is performed to the surface of the remaining dummy gate. A wet etching process is performed to remove the remaining dummy gate and thereby form a gate trench.
Abstract:
The present invention provides a method for forming a semiconductor structure having a metal connect. A substrate is provided, and a transistor and a first ILD layer are formed thereon. A first contact plug is formed in the first ILD layer to electrically connect the source/drain region. A second ILD layer and a third ILD layer are formed on the first ILD layer. A first opening above the gate and a second opening above the first contact plug are formed, wherein a depth of the first contact plug is deeper than that of the second opening. Next, the first opening and the second opening are deepened. Lastly, a metal layer is filled into the first opening and the second opening to respectively form a first metal connect and a second metal connect.
Abstract:
The present invention provides a semiconductor structure including a substrate, a transistor, a first ILD layer, a second ILD layer, a first contact plug, second contact plug and a third contact plug. The transistor is disposed on the substrate and includes a gate and a source/drain region. The first ILD layer is disposed on the transistor. The first contact plug is disposed in the first ILD layer and a top surface of the first contact plug is higher than a top surface of the gate. The second ILD layer is disposed on the first ILD layer. The second contact plug is disposed in the second ILD layer and electrically connected to the first contact plug. The third contact plug is disposed in the first ILD layer and the second ILD layer and electrically connected to the gate. The present invention further provides a method of making the same.