Abstract:
Crosslinkable random copolymers comprising atom transfer radical polymerization (ATRP) initiators and crosslinked copolymer films formed from the copolymers are provided. The random copolymers, which are polymerized from one or more alkyl halide functional inimers and one or more monomers having a crosslinkable functionality, are characterized by pendant ATRP initiating groups and pendant crosslinkable groups.
Abstract:
The present invention provides structures including a substrate, a crosslinked polymer film disposed over the substrate, and a patterned diblock copolymer film disposed over the crosslinked polymer film. The crosslinked polymer comprises a random copolymer polymerized from a first monomer, a second monomer, and a photo-crosslinkable and/or thermally crosslinkable third monomer, including epoxy-functional or acrylyol-functional monomers. Also disclosed are methods for forming the structures.
Abstract:
Formamide group-containing monomers and polymers made by polymerizing the monomers are provided. Also provided are methods of polymerizing the monomers and methods of synthesizing functionalized polymers by pre- and/or post-polymerization functionalization. The monomers are non-toxic and can generate highly reactive isocyanate and isonitrile precursors in a one-pot synthesis that enables the incorporation of complex functionalities into the side-chain of the polymers that are synthesized from the monomers.
Abstract:
Methods of forming films of aligned carbon nanotubes on a substrate surface are provided. The films are deposited from carbon nanotubes that have been concentrated and confined at a two-dimensional liquid/liquid interface. The liquid/liquid interface is formed by a dispersion of organic material-coated carbon nanotubes that flows over the surface of an immiscible liquid within a flow channel. Within the interface, the carbon nanotubes self-organize via liquid crystal phenomena and globally align along the liquid flow direction. By translating the interface across the substrate, large-area, wafer-scale films of aligned carbon nanotubes can be deposited on the surface of the substrate in a continuous and scalable process.
Abstract:
Block copolymers for use in block copolymer lithography, self-assembled films of the block copolymers and methods for polymerizing the block copolymers are provided. The block copolymers are characterized by high Flory-Huggins interaction parameters (χ). The block copolymers can be polymerized from protected hydroxystyrene monomers or from tert-butyl styrene and 2-vinylpyridine monomers.
Abstract:
Random copolymers, crosslinked thin films of the random copolymers and cell culture substrates comprising the crosslinked thin films are provided. Also provided are methods of making and using the copolymers, thin films and substrates. The copolymers are polymerized from glycidyl methacrylate monomers and vinyl azlactone monomers. The crosslinked thin films are substrate independent, in that they need not be covalently bound to a substrate to form a stable film on the substrate surface.
Abstract:
Methods of producing layers of patterned graphene with smooth edges are provided. The methods comprise the steps of fabricating a layer of crystalline graphene on a surface, wherein the layer of crystalline graphene has a crystallographically disordered edge, and decreasing the crystallographic disorder of the edge of the layer of crystalline graphene by heating the layer of crystalline graphene on the surface at an elevated temperature in a catalytic environment comprising carbon-containing molecules.
Abstract:
The present invention provides crosslinked epoxy-functional copolymer films and microarrays built from the crosslinked epoxy-functional copolymer films. Microarrays incorporating the copolymers include a substrate on which a film of the crosslinked epoxy-functional copolymer is disposed and target molecules bound to the copolymer film. The crosslinked polymer films are well-suited for use as scaffolds for target molecules in microarrays because they provide a high density of binding sites for the target molecules, are mechanically stable, and may be coated onto a wide range of substrates.
Abstract:
Methods for forming carbon nanotube arrays are provided. Also provided are the arrays formed by the methods and electronic devices that incorporate the array as active layers. The arrays are formed by flowing a fluid suspension of carbon nanotubes through a confined channel under conditions that create a velocity gradient across the flowing suspension.
Abstract:
Conjugated polymers composed of bi-pyridine units linked to 9,9-dialkyl fluorenyl-2,7-diyl units via imine linkages along the polymer backbone are provided. Also provided are semiconducting single-walled carbon nanotubes coated with the conjugated polymers and methods of sorting and separating s-SWCNTs from a sample comprising a mixture of s-SWCNTs and metallic single-walled carbon nanotubes using the conjugated polymers.