Abstract:
One embodiment of the present invention provides a solar cell. The solar cell includes a photovoltaic structure and a front-side metal grid situated above the photovoltaic structure. The front-side metal grid also includes one or more electroplated metal layers. The front-side metal grid includes one or more finger lines, and each end of a respective finger line is coupled to a corresponding end of an adjacent finger line via an additional metal line, thus ensuring that the respective finger line has no open end.
Abstract:
A substrate processing system that includes a substrate processing chamber having one or more sidewalls that at least partially define a substrate processing region and extend away from a bottom wall of the substrate processing chamber at an obtuse angle; a source material holder configured to hold a source material within the substrate processing region; a plasma gun operatively coupled to introduce a plasma beam into the substrate processing region; one or more magnets operatively arranged to generate a magnetic field that guides the plasma beam to the source material holder; and a substrate carrier configured to hold one or more substrates within the substrate processing region.
Abstract:
Embodiments of the present invention are directed towards fire blocking apparatuses that include fire skirts that extend off edges of solar panels installed on roofs. The fire skirts are configured to block the gap between a solar panel and the roof surface on which it is installed to prevent or suppress the ignition for spreading of fire underneath the solar panel. Some of the fire skirts are heat or fire sensitive and are configured to the melt, deform, or otherwise be altered upon the application of a threshold temperature such that the fire skirts block the gap between the solar panel and the roof surface. Other embodiments are directed towards fire skirts that include a solar panel mounting surface and a shelf surface configured to accommodate ballast or fasteners to affix the solar panel to the roof surface. Such embodiments can be formed from pre-scored or pre-folded sheet materials.
Abstract:
One embodiment of the present invention provides a solar cell. The solar cell includes a Si base layer, a passivation layer situated above the Si base layer, a layer of heavily doped amorphous Si (a-Si) situated above the passivation layer, a first transparent-conducting-oxide (TCO) layer situated above the heavily doped a-Si layer, a back-side electrode situated below the Si base layer, and a front-side electrode situated above the first TCO layer. The first TCO layer comprises at least one of: GaInO, GaInSnO, ZnInO, and ZnInSnO.
Abstract:
A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.
Abstract:
One embodiment of the present invention provides a solar cell. The solar cell includes a Si base layer, a passivation layer situated above the Si base layer, a layer of heavily doped amorphous Si (a-Si) situated above the passivation layer, a first transparent-conducting-oxide (TCO) layer situated above the heavily doped a-Si layer, a back-side electrode situated below the Si base layer, and a front-side electrode situated above the first TCO layer. The first TCO layer comprises at least one of: GaInO, GaInSnO, ZnInO, and ZnInSnO.
Abstract:
One embodiment of the present invention provides a solar cell. The solar cell includes a photovoltaic structure and a front-side metal grid situated above the photovoltaic structure. The front-side metal grid also includes one or more electroplated metal layers. The front-side metal grid includes one or more finger lines, and each end of a respective finger line is coupled to a corresponding end of an adjacent finger line via an additional metal line, thus ensuring that the respective finger line has no open end.
Abstract:
Systems and methods for facilitating a home energy audit. In one embodiment, a plurality of user inputs can be received that pertain to an energy audit of a home, where the plurality of user inputs user inputs can include one or more two-dimensional layouts of the home. The user inputs can be converted into input data appropriate for consumption by an energy simulation engine, where the converting can comprise generating a three-dimensional model of the home can be generated based on the one or more two-dimensional layouts. A yearly energy simulation of the home can then be executed via the energy simulation engine based on the input data.
Abstract:
Techniques for provisioning energy generation and/or storage systems. In one embodiment, a method is provided that can comprise automatically determining, by a site gateway, information pertaining to one or more components of an energy storage system, where the site gateway and the one or more components are located at a customer site. The method can further comprise configuring, by the site gateway, the energy storage system based on the automatically determined information.
Abstract:
Embodiments of the present invention are directed towards fire blocking apparatuses that include fire skirts that extend off edges of solar panels installed on roofs. The fire skirts are configured to block the gap between a solar panel and the roof surface on which it is installed to prevent or suppress the ignition for spreading of fire underneath the solar panel. Some of the fire skirts are heat or fire sensitive and are configured to the melt, deform, or otherwise be altered upon the application of a threshold temperature such that the fire skirts block the gap between the solar panel and the roof surface. Other embodiments are directed towards fire skirts that include a solar panel mounting surface and a shelf surface configured to accommodate ballast or fasteners to affix the solar panel to the roof surface. Such embodiments can be formed from pre-scored or pre-folded sheet materials.