Abstract:
A polymer can be prepared using a loop reactor and process including feeding a process stream through the loop reactor and maintaining the loop reactor at a steady state by controlling a flow of coolant fluid to maintain a temperature in the loop reactor at a preset point. The temperature in the loop reactor may be maintained at a preset point by using a coolant fluid flow controller and valve unit having a substantially linear response over the normal operating range of the controller and valve unit. The normal operating range of the controller and valve unit may be sufficient to provide a flow range not limiting to the throughput of the loop reactor.
Abstract:
A multitube reactor, wherein tubes having smaller tolerance between a nominal size and actual sizes are used as reaction tubes to stably perform a high yield reaction for a long period, a catalyst is filled into the reaction tubes so that the catalyst layer peak temperature portions of the reaction tubes are not overlapped with the connection sites thereof with baffles to effectively prevent hot spots from occurring and stably perform a reaction for a long period without the clogging of the reaction tubes, a heat medium and raw material gas are allowed to flow in the direction of a countercurrent and a specified type of catalyst is filled into the reaction tubes so that activity is increased from the inlet of the raw material gas to the outlet thereof to prevent the autooxidation of products so as to prevent equipment from being damaged due to the reaction, and, at the time of starting, gas with a temperature of 100 to 400° C. is led to the outside of the reaction tubes to increase the temperature of the reaction tubes and, a heat medium, which is solid at the room temperature, is heated to circulate to the outside of the reaction tubes to efficiently start up the reactor without affecting the activity of the catalyst.
Abstract:
The present invention provides a heat exchange reactor, which includes at least one tube bundle containing a plurality of tubes arranged substantially parallel to a common longitudinal axis and within an external pressure housing, the bundle having first and second ends in respective first fluid communication with at least one first fluid inlet and at least one first fluid outlet, and the external pressure housing having at least one second fluid inlet and at least one second fluid outlet; at least one baffle oriented substantially perpendicular to the longitudinal axis and disposed about the bundle and configured as a manifold to control a flow of the second fluid; at least one layer of interior thermal insulation disposed between the bundle and the housing and in fluid communication with the second fluid. Other embodiments of the present invention include methods of using and methods of making the heat exchange reactor.
Abstract:
The present invention provides a reactor, which includes: a unitary shell assembly having an inlet and an outlet; a flow path extending within the shell assembly from the inlet to the outlet, the flow path having a steam reformer section with a first catalyst and a water gas shift reactor section with a second catalyst, the steam reformer section being located upstream of the water gas shift reactor section; a heating section within the shell assembly and configured to heat the steam reformer section; and a cooling section within the shell assembly and configured to cool the water gas shift reactor section. The present invention also provides a simplified hydrogen production system, which includes the catalytic steam reforming and subsequent high temperature water gas shift of low-sulfur (
Abstract:
The temperature distribution of a heating medium in the reactor is allayed and the occurrence of hot spots is repressed. In a shell-and-tube type reactor provided with donut type and disc type baffle plates, reaction tubes are disposed even in the holes formed in the donut type baffle plates and an empty space devoid of a configuration of the reaction tubes is formed at the center of the shell. According to this invention, (meth)acrylic acid and/or (meth)acrolein can be produced at a low energy by catalytic gas phase oxidation of propylene- or isobutylene-containing gas.
Abstract:
A reactor for testing catalyst systems which has a plurality of catalyst tubes (2) which are arranged parallel to one another in the interior space of the reactor and whose ends are welded into tube plates and also has caps (3) at each end of the reactor which each bound a cap space (4), with a fluid reaction medium (5) being fed via one cap space (4) into the catalyst tubes (2), flowing through the catalyst tubes (2) and being discharged via the other cap space (4), and is also provided with a heat exchange medium circuit in which the heat exchange medium (6) is fed in at one end of the reactor, flows through the intermediate space between the catalyst tubes (2) and flows out at the other end of the reactor, wherein the catalyst tubes (2) are arranged in two or more catalyst tube regions (7) which are thermally separate from one another, is proposed.
Abstract:
A fuel conversion reactor includes a shell-and-tube heat exchanger for controlling the temperature of a hot gaseous mixture produced by catalytic or non-catalytic reaction of a fuel with a gaseous fluid, and for controlling the temperature of the gaseous fluid and/or the fuel prior to the reaction. The reactor is either a catalytic or non-catalytic burner, or a fuel reformer for converting a fuel to hydrogen. A preferred reactor includes an outer shell having first and second ends and an inner surface, a primary inner shell extending into the outer shell, the primary inner shell defining a heat exchanging chamber and having primary and secondary ends, and a secondary inner shell having a first end located adjacent the secondary end of the primary inner shell. One or more outlet apertures are formed between the two inner shells for passage of the gaseous fluid out of the heat exchanging chamber. There are also a plurality of heat exchange tubes extending through the heat exchanging chamber between first and second tube sheets and connected to same. The first tube sheet is mounted in the primary inner shell while the second tube sheet is connected to the secondary inner shell. The tubes form passages for flow of the hot gaseous mixture in heat exchange contact with the gaseous fluid through the heat exchanging chamber, thereby preheating the gaseous fluid prior to reaction with the fuel. The adjacent ends of the inner shells form a disconnected joint and the secondary inner shell is free to move relative to the primary inner shell upon thermal expansion of the tubes.
Abstract:
A combined component consists of a heat exchanger and a reactor. The heat exchanger is designed in a plate form, and flow spaces for a first medium and a second medium are alternately defined between successive plates. The plates of the heat exchanger are configured as essentially annular. The heat exchanger has, substantially perpendicularly to the plates, a tubular outer wall and a tubular inner wall. The reactor is surrounded by the inner wall of the heat exchanger. The product of the reactor is conducted through supply orifices on the inner wall of the heat exchanger into the flow spaces for one of the two fluids in the heat exchanger.
Abstract:
A heat exchange reactor including a housing, a plurality of tubes mounted in the housing and configured to carry a first fluid, and a baffle having a plurality of holes receiving the tubes. The baffle is configured to guide a second fluid provided within the housing to flow in a direction generally perpendicular to the tubes. The reactor includes various configurations for minimizing adverse effects of thermal expansion of the baffle and the tubes. The reactor is configured to minimize mechanical interference between the baffle and the tubes in both an operational state and a non-operational state, for example, by shaping the holes in the baffle to take into account thermal expansion. The reactor also includes a thermal insulator along a length of the tubes at a large temperature gradient zone within the reactor. The reactor further includes a heat transfer fin in contact with only one of the tubes.
Abstract:
In the reaction of catalytic gas phase oxidation by means of a shell-and-tube type reactor adapted to circulate a heating medium to the shell of the reactor through the medium of a circulation device connecting an annular conduit connected thereto, a method for the catalytic gas phase oxidation characterized by subjecting a part of the heating medium extracted from the shell of the reactor to heat exchange, introducing the heating medium resulting from the heat exchange into the proximity of a heating medium circulation inlet on the inlet side of the circulation device or the annular conduit on the outlet side of the reactor. The flow rate of the heating medium after the heat exchange is preferred to be in the range of 2-40 vol. % based on the flow rate of the heating medium within the shell of the reactor and the temperature difference of the heating medium at the inlet and the outlet to be in the range of 15-150° C. According to this invention, it is made possible to reduce evenly the hot spots in the reaction tubes, improve the yield of the product aimed at, and implement a reaction of catalytic gas phase oxidation of propylene or isobutylene.