Abstract:
Disclosed is a process for forming a patterned fluoropolymer film on a substrate by raised relief printing a fluoropolymer solution with a patterned raised relief printing plate, and drying the solvent from the solution to form the patterned fluoropolymer film. Such fluoropolymer films are useful as antireflective or hydrophobic layers on substrates used in optical displays.
Abstract:
A method is disclosed for providing a patterned surface wherein predetermined regions of the surface are masked with a self-assembled monolayer (“SAM”) covalently bound to a brush polymer overlayer. The remainder of the substrate surface will generally be functionalized with a second self-assembled monolayer. Preferably, the method involves a microcontact printing technique, wherein a molecular moiety capable of spontaneously forming an SAM upon transfer to a surface is “stamped” onto a substrate surface, followed by growth (or covalent attachment) of a polymer on exposed functional groups within the SAM molecules. Coverage of surface regions with both an SAM and a polymer overlayer provides a number of advantages, particularly with regard to surface masking during etching and the like. The method is useful in the manufacture of microelectronic circuitry, biosensors, high-density assay plates, and the like.
Abstract:
Improved methods of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding. A method for controlling the shape of a liquid on the surface of an article is provided, involving applying the liquid to a self-assembled monolayer on the surface, and controlling the electrical potential of the surface.
Abstract:
A process and apparatus for processing a monolayer film and transferring the monolayer film to a substrate are provided. In accordance with one embodiment of the present invention, a process for transferring a monolayer film to a substrate is provided comprising the steps of: (i) providing a water-based carrier media defining an upper surface; (ii) introducing process particles on the upper surface of the carrier media, wherein the molecules are dissolved in a solvent and the particles and the solvent are insoluble in the carrier media; (iii) evaporating the solvent such that a non-cohesive monolayer film of the particles is formed on the upper surface of the carrier media; (iv) decreasing a degree of void incorporation in the monolayer film of particles by compressing a dimension of the non-cohesive film along the upper surface of the carrier media, and sonicating the carrier media to form micro-bubbles in the carrier media, wherein the compression and the sonication contribute to a decreased degree of void incorporation in the film of process particles; and (v) transferring the film of particles to a surface of the substrate. The steps of compressing and sonicating may be executed concurrently.
Abstract:
A method is disclosed for providing a patterned surface wherein predetermined regions of the surface are masked with a self-assembled monolayer (nullSMAnull) covalently bound to a brush polymer overlayer. The remainder of the substrate surface will generally be functionalized with a second self-assembled monolayer. Preferably, the method involves a microcontact printing technique, wherein a molecular moiety capable of spontaneously forming an SMA upon transfer to a surface is nullstampednull onto a substrate surface, followed by growth (or covalent attachment) of a polymer on exposed functional groups within the SMA molecules. Coverage of surface regions with both an SMA and a polymer overlayer provides a number of advantages, particularly with regard to surface masking during etching and the like. The method is useful in the manufacture of microelectronic circuitry, biosensors, high-density assay plates, and the like.
Abstract:
Improved method of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding. A method for controlling the shape of a liquid on the surface of an article is provided, involving applying the liquid to a self-assembled monolayer on the surface, and controlling the electrical potential of the surface.
Abstract:
A method is proposed with which chemically defined bodies can be deposited on a substrate. Therefor, the bodies are fixed with a predetermined orientation on a stamping means which is then approached to the substrate whereby the bodies are deposited. While releasing the stamping means the bodies remain on the substrate keeping their orientation.
Abstract:
The present invention relates generally to molecular printing techniques for use in sensors, arrays, and integrated optics and electronics. The invention features described give rise to the ability to immobilize biological probes by force-induced patterning, while still maintaining the conductivity of the graphene substrate. Most particularly, the present invention relates to covalent patterning of graphene surface using a force-accelerated reaction.
Abstract:
The invention relates to a method for transferring a nano-layer (1) from a first substrate (5, 105) to a second substrate (30, 130), wherein the nano-layer (1) comprises a self-aggregating monolayer with cross-linked phenyl units and/or a mono-atomic graphite layer (graphene), wherein the method comprises the following steps: a. applying a transfer medium (20, 120) onto nano-layer (1), wherein in this step or afterwards the transfer medium (20, 120) is transformed from a liquid or gaseous phase in a solid phase; b. separating the transfer medium (20, 120) and the nano-layer (1) from the first substrate (5, 105); and c. applying the transfer medium (20, 120) and the nano-layer (1) onto the second substrate (30, 130); and d. removing the transfer medium (20, 120).
Abstract:
Disclosed is a polymer brush composite including a substrate, a solid layer disposed on the substrate and containing at least one of a metal or a metal oxide, and a plurality of polymer chains penetrating the solid layer in such a manner that one end of each of the polymer chains is disposed on the upper side of the substrate and the other end of each the polymer chains is exposed at a surface of the solid layer on an opposite side of the solid layer to the substrate. The polymer brush composite exhibits good adhesion between an organic polymer compound and an inorganic material and has the surface the organic polymer compound and the inorganic material uniformly coexist.