Abstract:
Methods and kits for labeling nucleic acids are provided. In the subject methods, an oligonucleotide tagged nucleic acid comprising an oligonucleotide tag is first generated. The oligonucleotide tagged nucleic acid is then contacted under hybridization conditions with a labeled oligonucleotide complementary to the oligonucleotide tag, yielding a labeled nucleic acid. The kits of the subject invention at least include a primer for use in enzymatically generating an oligonucleotide tagged target nucleic acid, where the primer generally at least includes an oligo dT region and the oligonucleotide tag, and a labeled oligonucleotide complementary to the oligonucleotide tag. The subject methods and kits find use in a variety of applications, and are particularly suited for use in gene expression analysis applications.
Abstract:
The present invention relates to two primers for amplifying a cytomegalovirus (CMV) nucleic acid suitable for a nucleic acid sequence-based amplification (NASBA) using a DNA-dependent RNA polymerase, a first primer containing a promoter sequence and a nucleic acid sequence consisting of at least fifteen continuous bases selected from the nucleic acid sequence of SEQ ID NO:1; a second primer containing a nucleic acid sequence consisting of at least fifteen continuous bases selected from the nucleic acid sequence of SEQ ID NO:2, NO:3 or NO:4; a detecting probe and/or a capturing probe containing a nucleic acid sequence consisting of at least continuous fifteen bases selected from the nucleic acid sequence(s) of SEQ ID NO:5, NO:6 and/or NO:7 wherein said sequence is modified if necessary; a reagent kit for detecting a CMV containing the above-mentioned primers and probes; and a nucleic acid sequence-based amplification (NASBA) using said primers. The advantages of the present invention are that CMV can be detected in an easy, rapid and specific manner with a high sensitivity.
Abstract translation:本发明涉及用于扩增适用于使用DNA依赖性RNA聚合酶的基于核酸序列的扩增(NASBA)的巨细胞病毒(CMV)核酸的两个引物,含有启动子序列的第一引物和包含启动子序列的核酸序列 至少15个选自SEQ ID NO:1的核酸序列的连续碱基; 含有选自SEQ ID NO:2,NO:3或NO:4的核酸序列的至少十五个连续碱基的核酸序列的第二引物; 检测探针和/或捕获探针,其含有至少连续十五个碱基的核酸序列,所述核酸序列选自SEQ ID NO:5,NO:6和/或NO:7的核酸序列,其中所述序列是 必要时修改; 用于检测含有上述引物和探针的CMV的试剂盒; 和使用所述引物的基于核酸序列的扩增(NASBA)。 本发明的优点是可以以高灵敏度以容易,快速和具体的方式检测CMV。
Abstract:
Methods, apparatus and compositions are presented for ligating ligands together which bind to a common target. One embodiment includes polynucleotide probes having photoreactive functional groups. The probes are capable of assuming substantially contiguous reactive positions on a target polynucleotide placing the photoreactive groups in juxtaposition. Activation of the photoreactive functional groups with radiant energy form a probe reaction product in which the probes are bound to each other.
Abstract:
In various embodiments methods and devices are provided for the detection and/or quantification of an analyte. In certain embodiments a device is provided comprising an aqueous two-phase system (ATPS) comprising a mixed phase solution that separates into a first phase solution and a second phase where, in use, said first phase solution becomes a leading phase and said second phase solution becomes a lagging phase; a lateral-flow assay (LFA); and a probe and/or a development reagent, where in use, said probe associates with said first phase solution in said leading phase of said ATPS and/or said development reagent associates with said second phase solution in said lagging phase of said ATPS. In certain embodiments a “one-pot” system of purifying and amplifying a nucleic acid is provided utilizing, e.g., an ATPS and isothermal amplification reagents.
Abstract:
Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
Abstract:
This invention provides methods for characterizing the amounts of nucleic acids, including plus/minus determinations, the use of different constructs, the use of a library and a reference library. Expression may also be compared in two or more samples using the methods of this invention. Also provided are heterophasic arrays comprising labeled positive copies of nucleic acids hybridized to the array and labeled negative copies of nucleic acids hybridized to the array, in which the labeled positive copies are separately quantifiable from the labeled negative copies.
Abstract:
Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
Abstract:
The present invention provides a method for performing a localised RCA reaction comprising at least two rounds of RCA, wherein the product of a second RCA reaction is attached, and hence localised, to a product of a first RCA reaction, said method comprising: (a) providing a concatemeric first RCA product comprising repeated monomers; (b) directly or indirectly hybridising to monomers of said first RCA product a circularisable oligonucleotide comprising target-complementary 3′ and 5′ end regions such that the 3′ and 5′ ends of said oligonucleotide hybridise in juxtaposition for ligation directly or indirectly to each other, wherein the target is a sequence in a monomer of said first RCA product or an intermediate molecule hybridised thereto, and wherein the target-complementary end regions of said circularisable oligonucleotide are 6 to 16 nucleotides in length; (c) directly or indirectly ligating the ends of said circularisable oligonucleotide to circularise the oligonucleotide, thereby to provide a template for a second RCA reaction, wherein when said ends are indirectly ligated (i) either a gap oligonucleotide is provided which hybridises to the monomers of the first RCA product in between the 3′ and 5′ ends of the circularisable oligonucleotide such that it may be ligated to the respective ends, or the hybridised 3′ end of the circularisable oligonucleotide is extended by a polymerase such that the extended 3′ end may be ligated to the hybridised 5′ end, and (ii) the total length of the region of the second RCA template directly or indirectly hybridised to the monomers is no longer than 32 nucleotides in length; and (d) performing a second RCA reaction using said second RCA template of (c) and a primer for said second RCA, to form a second RCA product, wherein in said second RCA reaction the second RCA template remains attached to the first RCA product, and thereby the second RCA product is attached to the first RCA product.
Abstract:
Provided herein are methods and kits for isothermal nucleic acid amplifications that use an oligocation-oligonucleotide conjugate primer for amplifying a target nucleic acid to generate amplicons. Isothermal DNA amplification methods that employ a strand displacing DNA polymerase and polyamine-oligonucleotide conjugate primer are also provided.
Abstract:
Provided herein are methods and kits for isothermal nucleic acid amplifications that use an oligocation-oligonucleotide conjugate primer for amplifying a target nucleic acid to generate amplicons. Isothermal DNA amplification methods that employ a strand displacing DNA polymerase and polyamine-oligonucleotide conjugate primer are also provided.