Abstract:
A pump that has a cavity (13) in which is located a non-elastomeric membrane (14). An inlet (24) opens into the cavity (13) and is associated with a valve (27). A valve (28) is likewise provided in an outlet (25). Also opening into cavity (13) is a port (22) to which a negative or positive pressures can be applied whereby the membrane (14) can be moved between its two stable states corresponding to completion of inlet and exhaust of a pumping cycle.
Abstract:
A container/transport system for a viscous material includes a container for the viscous material and a transport conduit for transporting the viscous material. The container includes an outer rigid wall; an inner flexible bladder, the inner flexible bladder containing a viscous material; and a conduit connected to the inner flexible bladder to introduce a fluid into the inner flexible bladder. The transport conduit includes an outer rigid wall, an inner flexible bladder, a volume between the outer rigid wall and the inner flexible bladder containing a viscous material, and a conduit connected to the inner flexible bladder to introduce a fluid into the inner flexible bladder. A valve controls a flow of fluid from a fluid source to either the inner flexible bladder of the container or the inner flexible bladder of the transport conduit.
Abstract:
A pump system especially suitable for pumping out liquids from tank enclosures. A liquid pump, Preferably powered by pressurized gas such as compressed air or natural gas from a nearby well, is mounted in a tubular member frame. The rate of pressurized gas flowing to the pump, and consequently the liquid pumping rate, is controlled by a limit valve, lever arm, and float assembly. As the liquid level increases, the float rises and the lever arm opens the limit valve, permitting a higher rate of pressurized gas flow and higher pump rate. At least some components of the frame have liquid inlet openings, which permit liquids to enter the frame, and the frame serves as a conduit to carry the liquids to the intake of the pump.
Abstract:
Plastic microfluidic structures having a substantially rigid diaphragm that actuates between a relaxed state wherein the diaphragm sits against the surface of a substrate and an actuated state wherein the diaphragm is moved away from the substrate. As will be seen from the following description, the microfluidic structures formed with this diaphragm provide easy to manufacture and robust systems, as well readily made components such as valves and pumps.
Abstract:
A diaphragm pump, in which a fluid moves at least a first piston of a first piston/cylinder system back and forth, the first piston being mechanically connected to at least one other hydraulic piston and the hydraulic piston driving at least one diaphragm by a hydraulic medium.
Abstract:
A pump for one or more different process fluids is provided including a pumping chamber having a process fluid inlet and outlet coupled to a process fluid valve on each pumping chamber for selectively preventing and allowing flow of process fluid through the pumping chamber. An actuation mechanism for pumping actuating fluid to actuating fluid chambers is provided that is in communication with the actuating fluid chambers to permit flow into each actuating fluid chamber of incompressible actuating fluid. A diaphragm separates each pumping chamber from an associated actuating fluid chamber for separating process fluid from actuating fluid. The actuation mechanism is removable by a quick disconnect that provides for disconnection of the activation mechanism without affecting process fluid. Operation of the actuation mechanism to displace actuating fluid causes actuating fluid to flow only into each actuating fluid chamber having an opened process fluid valve, resulting in pumping.
Abstract:
A pump for a dialysis machine, the pump having a pump chamber and a deformable membrane actuable to pump a fluid from the pump chamber, the pump chamber being substantially conical such that the membrane is actuated to extend into the conical chamber in order to pump the fluid from the chamber.
Abstract:
A chemical liquid supply device has a pump provided with a pump chamber which is expanded and contracted by an elastically deformable bellows, and chemical liquid in a chemical liquid container flows into the pump chamber through a suction channel. The chemical liquid in the pump chamber is discharged through a discharge channel to a discharge nozzle. A looped circulation channel for returning the chemical liquid supplied from the pump chamber to the pump chamber is connected to the pump, and provided with an expanding and contracting portion. A filter for filtering the chemical liquid which is returned to the pump chamber is provided to the circulation channel. Since flow resistance of the filter is not applied to the pump when the chemical liquid is discharged from a discharge nozzle, it's possible to discharge a specific amount of chemical liquid from the discharge nozzle with a high degree of accuracy.
Abstract:
Microfluidic methods and devices for heterogeneous binding and agglutination assays are disclosed, with improvements relating to mixing and to reagent and sample manipulation in systems designed for safe handling of clinical test samples.
Abstract:
The invention relates to an apparatus employing pressure transients for transporting fluids comprising at least one partly enclosed space (201,301,501,601,606,701,1101,1201), at least one body (202,302,502,602,607,702,1102,1202) in said at least one partly enclosed space, where said at least one body is movable relatively to the interior of said at least one partly enclosed space, at least one opening (204,205,304,404,504,604,605,704,705,1104, 1204) in said at least one enclosed space which allows a fluid to flow alternately in the direction into and out of said at least one partly enclosed space, at least one first conduit (211,311,411,511,513,611,711,1111,1211) and at least one second conduit (212, 312,412,512,514,612,712,1112,1212) in fluid communication with at least one of said at least one opening, at least one first reservoir (231.331.431.531.533.631.731.1131.1231) and at least one second reservoir (232.332.432.532.534.632.732.1132.1232) connected to said at least one first conduit and at least one second conduit respectively, at least one first mechanical unit (221.321.421.521.523.621.721.1121.1221) and at least one second mechanical unit (222.322.422.522.524.622.722.1122.1222) in said at least one first conduit and at least one second conduit respectively, where said at least one first mechanical unit only allows flow in said at least one first conduits from said at least one first reservoir and towards said at least one partly enclosed space, and said at least one second mechanical unit only allows flow in said at least one second conduit in the direction from said at least one partly enclosed space and towards said at least one second reservoir. The invention is further characterized in that at least one positive pressure transient is generated by at least one object, with nonzero momentum, colliding with said at least one body, where at least part of said at least one positive pressure transient produces flow of fluid out of said at least one partly enclosed space through said at least one second mechanical unit and into said at least one second reservoir, and at least one negative pressure transient is generated in said at least one partly enclosed space, where said at least one negative pressure transient, together with the resulting at least one hydrostatic head between at least one of said at least one first reservoirs and at least one of said at least one partly enclosed space, produce flow of fluid out of said at least one first reservoir through said at least one first mechanical unit and into said at least one partly enclosed space.