Abstract:
A hydrogen generator is provided for generating hydrogen gas for a fuel cell stack. The hydrogen generator includes a reaction area and a reactant storage area for storing a reactant composition for reacting to generate hydrogen gas. The hydrogen generator also includes a high pH solution contained within a solution storage area. Hydrogen gas is discharged through an outlet that passes through a filter to supply gas to the fuel cell. A predetermined quantity of high pH solution is injected into the reaction area to stop the reaction when electrical power is no longer demanded.
Abstract:
Method to prepare fluids (liquids and gases) containing pure chlorine dioxide which is not contaminated by the starting materials or the byproducts of the chlorine dioxide synthesis or to deliver pure chlorine dioxide into any medium capable of dissolving chlorine dioxide, wherein the chlorine dioxide generated in the process is transported across a pore free polymeric membrane via selective permeation into the target medium. Apparatus to realize the said method, wherein the generation of chlorine dioxide is carried out in such a reactor where some or all walls comprising the reactor, or the walls of a permeator unit attached to the reactor, are made of the said pore free polymer, characteristically some kind of silicone rubber, which is highly permeable to chlorine dioxide, but which is practically impermeable for the acidic and corrosive reagents used for the chlorine dioxide synthesis, its permeability being at least 3 orders of magnitude lower for these contaminating components compared to that of chlorine dioxide. The invention can be realized both by batch and by continuous reactors.
Abstract:
A method for fabricating a high-density zeolite membrane structure is described. The method includes the step of combining (i) a mineral zeolite material; (ii) at least one cement precursor; and (iii) an organic binder, with an aqueous component, to form an aqueous composite zeolite composition. The zeolite composition is then applied on a surface of a scaffold formed from a porous, metal oxide material. The zeolite composition is dried, and then heated under conditions to form a metal oxide-zeolite composite layer. This layer is exposed to a phosphate composition, under conditions sufficient to reduce the porosity to a level no greater than about 10%. A high-density zeolite cement composite membrane structure results. Related methods for separating hydrogen from a fluid stream, using the membrane structure, are also disclosed.
Abstract:
A system and method is provided for using sunlight to convert an atmospheric gas to an output product and capture that output product. A photocatalytic element is encapsulated within a chamber of a photocatalytic panel in which the chamber is light transmissive, and is substantially permeable to the atmospheric gas and substantially impermeable to the output product. Water may be provided to the photocatalytic element to react with the atmospheric gas. A system is provided for withdrawing the output product for storage.
Abstract:
A hydrogen generating device is adapted for a fuel cell. The hydrogen generating device includes a casing, a button, a solid reactant, a bag-shaped body, and at least one flexible element. The casing has a containing space and an opening. The button is integrally formed and connected to the casing to seal the opening. The solid reactant is disposed in the casing. The bag-shaped body is disposed in the casing and contains a liquid reactant. The flexible element is connected to the casing and is located in the containing space. The flexible element includes a bending end, wherein the flexible element is aligned to the button and is located between the button and the bag-shaped body. When the button is pressed, the button pushes the flexible element so the bending end pierces the bag-shaped body, and the liquid reactant flows out and reacts with the solid reactant to generate hydrogen.
Abstract:
The invention relates to a process for converting ammonium formed in a hydroxylamine phosphate oxime process into molecular nitrogen in an ammonium destruction zone, comprising—preparing a vapour stream comprising nitrogen oxide from ammonia, in an ammonia combustion zone;—bringing into contact by feeding to the ammonium destruction zone, individually and/or as pre-mixed combinations, at least part of said vapour stream, and a first liquid stream, comprising ammonium formed in the hydroxylamine phosphate oxime process, and a second liquid stream, comprising at least one acid selected from nitric acid and nitrous acid in a total nitric+nitrous acid concentration of at least 30 wt. %, thereby forming in the ammonium destruction zone a fluid mixture; and—reacting ammonium ions in the fluid mixture with nitrogen oxide under formation of molecular nitrogen, in the ammonium destruction zone. The invention further relates to an installation for converting ammonium formed in a hydroxylamine phosphate oxime process.
Abstract:
A method for the production of synthesis gas from gaseous hydrocarbons includes the use of allothermal steam reforming with catalysts. In order to produce the synthesis gas efficiently without exhaust gas in a compact apparatus, energy is at least partly supplied by electrical energy, that the energy is supplied by electrically heated contact surfaces and that the energy is supplied by contact surfaces within a fixed bed of catalyst pellets and/or within a fluidised bed at least partly consisting of catalyst particles.
Abstract:
The present invention is an apparatus for the gasification of liquid fuels, involving: (a) a nozzle for atomizing and feeding a liquid fuel into a mixing region; (b) an inlet for feeding an oxidizer into the mixing region; (c) the mixing region for mixing the atomized fuel with the oxidizer; (d) a radiation hot box for vaporizing the liquid fuel, the radiation hot box comprising an ignition source positioned inside coiled catalytic reactor; (e) the coiled catalytic reactor comprising a coiled metal screen providing for a radial flow path from an inner diameter to an outer diameter of the coiled metal screen and providing for a plurality of void volumes in random order along the flow path from the inner diameter to the outer diameter; and (f) an outlet for exiting a gaseous reformate.
Abstract:
A liquid-gas phase reactor system including a slinger located in an upper section (headspace region) of a reaction vessel. The slinger comprises an upper horizontal surface including a plurality of vertically raised vanes extending radially outward along a curved path which effectively distribute liquid about the reactor vessel. A method for conducting an oxidation reaction using a liquid-gas phase reactor system is also disclosed. The disclosed reactor system and method have a broad range of applications but are particularly suited for the production of terephthalic acid.