Abstract:
A valve actuation system for an internal combustion engine is disclosed. The engine has a first set of cylinders having a first set of exhaust valves and a second set of cylinders having a second set of exhaust valves. The valve actuation system for the exhaust valves includes one or more first cams having a compression-release lobe and a main exhaust lobe adapted to transfer valve actuation motion to the first set of exhaust valves, and one or more second cams having an early exhaust valve opening (EEVO) lobe and a main exhaust lobe adapted to transfer valve actuation motion to the second set of exhaust valves. The valve actuation system may provide any combination of (i) main exhaust valve actuation with or without compression release actuation with (ii) main exhaust valve actuation with or without EEVO for the two sets of cylinders.
Abstract:
A short duration cam of a variable valve lift apparatus has a cam lift acceleration including a first peak formed before a center of the cam lift acceleration, and a second peak formed after the center of the cam lift acceleration. A relative ratio of a smaller value to a greater value of the first peak and the second peak is 0.8 or more.
Abstract:
An internal combustion engine comprising a combustion chamber having a surrounding sidewall with a piston slideably disposed in the surrounding sidewall. A motion conversion mechanism is connected to the piston via a piston rod, and is operative to convert reciprocating motion of the piston into rotary motion. The motion conversion mechanism comprises a cam drum and at least one roller connected to the piston rod. A piston valve including a valve head and a valve stem extends through the piston. The piston valve is moveable between an open position and a closed position to control fluid movement through the flow passage. The valve head is pivotably connected to the valve stem and the engine includes a linkage connected to the valve head that is operative to pivot the valve head between an intake position and an exhaust position.
Abstract:
A system for actuating an engine valve is disclosed. The system may include a rocker arm shaft (110) having a control fluid supply passage (112) and an exhaust rocker arm (500) pivotally mounted on the rocker arm shaft (110). A cam (210) for imparting main exhaust valve actuation to the exhaust rocker arm (500) may contact a cam roller associated with the exhaust rocker arm. A valve bridge (300) may be disposed between the exhaust rocker arm (500) and first and second engine valves (400, 450). A sliding pin (310) may be provided in the valve bridge (300), said sliding pin contacting the first engine valve (400). An engine braking rocker arm (100) may be pivotally mounted on the rocker arm shaft (110) adjacent to the exhaust rocker arm (500). The engine braking rocker arm may have a central opening, a hydraulic passage (102) connecting the central opening with a control valve (130), and a fluid passage (105) connecting the control valve with an actuator piston assembly (140). The actuator piston assembly may include an actuator piston (141) adapted to contact the sliding pin (310) during engine braking operation. A bushing (115) may be disposed between the engine braking rocker arm (100) and the rocker arm shaft (110). The bushing may have a port (118) which registers with the hydraulic passage (102). A cam (200) is provided for imparting engine braking actuation to the engine braking rocker arm (100). A plate (122) is fastened to a back end of the engine braking rocker arm (100), and a spring (124) biases the plate and the engine braking rocker arm (110) into contact with the cam (200).
Abstract:
A camshaft may include a first shaft, a first lobe member, and a second lobe member. The first shaft may include an annular wall defining a first bore. The wall may include a first portion having a first radial outer surface and a second portion having a second radial outer surface that is radially offset relative to the first radial outer surface. The first lobe member may define a second bore having the first portion of the first shaft located therein and frictionally engaged with the first shaft for rotation with the first shaft. The second lobe member may define a third bore having the second portion of the first shaft located therein. The second lobe member may be rotatably disposed on the second portion of the first shaft.
Abstract:
A valve train device for switching lift of gas exchange valves of an internal combustion engine includes a camshaft including a carrier shaft and a cam assembly disposed non-rotatably and axially displaceably on the carrier shaft via a guide. The cam assembly includes a bearing region, at least one cam group having at least two cams and a first and a second axial contour. A bearing bush is mounted non-rotatably and axially displaceably in a camshaft bearing and radially supports the camshaft in the camshaft bearing. The cam assembly is mounted rotatably and axially displaceably in the bearing bush in the bearing region. The bearing bush includes a first axial reverse opposing contour that corresponds to, and is switchable into operative contact with, the first axial contour and a second axial reverse opposing contour that corresponds to, and is switchable into operative contact with, the second axial contour.
Abstract:
In a valve drive device, especially for an internal combustion engine including a camshaft with a cam element which is axially movably supported on the camshaft but in a rotationally fixed manner, the cam element includes a gate structure and an actuation device is provided with at least one shift element for engagement with the gate arrangement for axially displacing the cam element and the shift element has a rotationally asymmetrical basic shape in order to follow the gate structure when placed in engagement therewith.
Abstract:
Method and arrangement for delivering EGR gas to combustion spaces in a multi-cylinder, four-stroke internal combustion engine. Each cylinder, with an associated piston, has at least one inlet valve and at least one exhaust valve (10) for controlling fluid interconnection between the combustion space in the cylinder and an intake system and an exhaust system, respectively. A rotatable camshaft (18) having a cam curve (23) is designed to interact with a cam follower (17) for operation of the exhaust valve (10) during a first opening and closing phase. The cam curve (23) is also designed to interact with a second cam follower (20) during a second opening and closing phase which is phase-offset in relation to the first aforementioned opening and closing phase. This configuration facilitates the cylinder being connected to the exhaust system during the induction stroke, once the exhaust stroke is completed.
Abstract:
A system and method for actuating one or more engine valves to produce an engine valve event is disclosed. The system may comprise: a housing; an accumulator disposed in the housing having a first open end and a second open end; a master piston slidably disposed in a first bore formed in the housing; a valve train element(s) for imparting motion to the master piston; and a slave piston slidably disposed in a second bore formed in the housing, the slave piston in fluid communication with the master piston through a high pressure hydraulic passage, wherein the first open end and the second open end of the accumulator are in communication with the high pressure hydraulic passage to selectively modify the imparted motion.
Abstract:
A spring seat is formed of an outer spring seat 10k and an inner spring seat 10j formed in a stepped-down shape so as to be positioned lower than the outer spring seat 10k, and a valve spring is formed of an outer spring 37 and an inner spring 36 that is disposed coaxially inside the outer spring 37 and that is larger in spring length than the outer spring 37.