Abstract:
The leadframe has a perforation to form, between a central platform and a peripheral part located a certain distance apart, radiating elongate leads. The leadframe has, on its rear face that comes into contact with a bearing surface of a mold, at least one recess and a groove for connecting this recess to the perforation.
Abstract:
A method for interlacing digital data to reduce transmission errors includes dividing a stream of digital data into consecutive blocks of bits, and interlacing each block of bits by writing to an interlacing table. The interlacing table is arranged in the form of rows and columns of memory addresses, with a number of the rows and columns corresponding to predetermined interlacing parameters. The access sequences to the memory addresses for interlacing the blocks of bits are different from each other. The method further includes reading a block of bits in the interlacing table according to a memory addresses access sequence, and also writing bits to a consecutive block of bits according to the memory addresses access sequence during the reading.
Abstract:
An electrically erasable and programmable memory includes an array of memory cells, and a distribution line linked to a receiving terminal of an external supply voltage and to a booster circuit. The distribution line provides an internal supply voltage. The distribution line is also linked to the receiving terminal through a diode or a diode circuit simulating operation of a diode. The memory includes a regulator for triggering the booster circuit when the internal supply voltage becomes lower than a threshold so as to maintain the internal supply voltage close to the threshold when the external supply voltage is too low, at least during the reading of memory cells. The diode or the diode circuit is blocked when the external supply voltage is too low.
Abstract:
A method for scrambling current consumption of an integrated circuit, at least during execution of a confidential operation by the integrated circuit that includes reading confidential data stored therein and/or the calculation of an encryption code is provided. The charge pump is activated to generate current consumption fluctuations on the electrical power supply line of the integrated circuit, at an intensity great enough to mask the current consumption variations associated with the execution of the confidential operation.
Abstract:
A method of programming a row of antifuse memory cells includes breaking down at least N antifuse elements in the memory cells. The breakdown includes the application of a breakdown voltage to the anode of each antifuse element. The antifuse elements are broken down sequentially by groups of P antifuse elements, with P being less than N and at least equal to 1. The antifuse elements of a same group simultaneously receive the breakdown voltage. The breakdown of a next group of antifuse elements immediately takes place after the breakdown of a previous group of antifuse elements.
Abstract:
In one embodiment, a semiconductor device includes a carrier substrate, a buried dielectric region overlying the carrier substrate, and a semiconductor film separated from the carrier substrate by the buried dielectric region. NMOS transistors and PMOS transistors are disposed at a surface of the semiconductor film and coupled together to form a static random access memory (SRAM) cell. The NMOS transistors and the PMOS transistors each include a gate dielectric layer having a thickness greater than three nanometers and an active region in the semiconductor film. The active region of the PMOS transistors are formed from a silicon-germanium alloy.
Abstract:
An electronic device includes a module that delivers a positive temperature coefficient output voltage at an output terminal. A thermistor includes a first MOS transistor operating in weak inversion mode and having a negative temperature coefficient drain-source resistance and whose source is coupled to the output terminal. A current source coupled to the output terminal imposes the drain-source current of the first transistor.
Abstract:
An indirect time-of-flight measurement sensor includes a photosensitive pixel array configured to acquire a succession of images of a scene during a given exposure time. The sensor includes a control unit configured to control the acquisition of the succession of images by the pixel array and to define an exposure time for this acquisition based on a pixel saturation rate of the array, distances between the sensor and elements of the scene, and a standard deviation of the distances between the sensor and the elements of the scene.
Abstract:
A bipolar transistor includes a collector. The collector is formed by: a first portion of the collector which extends under an insulating trench, and a second portion of the collector which crosses through the insulating trench. The first and second portions of the collector are in physical contact.
Abstract:
A device is configured to receive a first carrier signal, and deliver a second carrier signal, and has a phase-locked loop including a first domain including an oscillator configured to generate a signal at a given frequency, and a circuit configured to generate information representative of the frequency of the signal generated by the oscillator, and to generate the second carrier signal and a clock signal, the first domain being clocked by the first carrier signal, a second domain, clocked by the clock signal, including a circuit configured to compare the frequency of the signal generated by the oscillator with the frequency of the first carrier signal and to control the oscillator, a matching circuit configured to transfer information representative of the frequency of the signal generated by the oscillator from the first domain to the second domain.