摘要:
A scalable layered video coding scheme that encodes video data frames into multiple layers, including a base layer of comparatively low quality video and multiple enhancement layers of increasingly higher quality video, adds error resilience to the enhancement layer. Unique resynchronization marks are inserted into the enhancement layer bitstream in headers associated with each video packet, headers associated with each bit plane, and headers associated with each video-of-plane (VOP) segment. Following transmission of the enhancement layer bitstream, the decoder tries to detect errors in the packets. Upon detection, the decoder seeks forward in the bitstream for the next known resynchronization mark. Once this mark is found, the decoder is able to begin decoding the next video packet. With the addition of many resynchronization marks within each frame, the decoder can recover very quickly and with minimal data loss in the event of a packet loss or channel error in the received enhancement layer bitstream. The video coding scheme also facilitates redundant encoding of header information from the higher-level VOP header down into lower level bit plane headers and video packet headers. Header extension codes are added to the bit plane and video packet headers to identify whether the redundant data is included.
摘要:
A motion-compensated video encoding scheme employs progressive fine-granularity layered coding to encode macroblocks of video data into frames having multiple layers, including a base layer of comparatively low quality video and multiple enhancement layers of increasingly higher quality video. Some of the enhancement layers in a current frame are predicted from different quality layers in reference frames. The video encoding scheme estimates drifting errors during the encoding and chooses a coding mode for each macroblock in the enhancement layer to maximize high coding efficiency while minimizing drifting errors.
摘要:
A retroreflective sheet structure (10) comprising a transparent layer (20) having a front light-receiving surface (30) and a rear retroreflecting surface (32). Light incident on the front surface (30) will pass through the layer (20), impinge on the rear retroreflective surface (32) and reflect back out through the front surface (30) in a predetermined direction. An identifying indicia (44) is chosen and then formed on the retroreflecting surface (32). This indicia (44) can be used for identification purposes, even years after an end product incorporating the reflective sheet structure (10) has been out in the field.
摘要:
A non-dyadic spatial scalable wavelet transform may scale an original digital video frame or digital image at a non-dyadic ratio. The digital video frame or digital image is quantized to create a set of data representing the digital video frame or digital image. The set of data is then input to the non-dyadic spatial scalable wavelet transform. The non-dyadic spatial scalable wavelet transform may then transform the data associated with a first pixel to a high-pass coefficient and use the high-pass coefficient to transform the data associated with a second and third pixel to low-pass coefficients. The low-pass coefficients may then be converted to a digital image for viewing.
摘要:
Transcoding hierarchical B-frames with rate-distortion optimization in the DCT domain is described. More particularly, and in one aspect, input media content is transcoded from an original bit rate to a reduced bit rate. The input media content includes multiple hierarchical bidirectional frames (“B-frames”), multiple intra-frames (I-frames), and multiple predictive frames (P-frames). Each B-frame is open-loop transcoded in view of the reduced bit rate by optimizing texture and motion rate-distortion in the DCT domain to generate a respective portion of transcoded media content. The transcoded media content, which includes transcoded B-frames, I-frames, and P-frames, is provided to a user for viewing.
摘要:
Video data for a high resolution image unit is coded with regard to both a low resolution reference image unit and a high resolution reference image unit. In an example encoding implementation, both low pass information and high pass information of residue data for a current image are generated. In an example decoding implementation, a current image is reconstructed by synthesizing both low pass information and high pass information for the reconstructed image.
摘要:
A lighting unit that includes a light source and a reflector assembly upon which the light source is mounted. The reflector assembly includes a first reflector having a first curved reflective surface extending away from the light source, and a second reflector having a second curved reflective surface extending away from the light source. The first curved reflective surface faces and opposes the second curved reflective surface. The first curved reflective surface has a curvature that is different from that of the second curved reflective surface. The first and second curved reflective surfaces both preferably terminate in convexities that reduce the size of dark band areas of illumination.
摘要:
A wireless communication device and the method thereof are disclosed. The wireless communication device in accordance with the present invention includes an integrated protocol layer supporting a first communication protocol and a second communication protocol; a single transceiver operative to transmit and receive signals of said first and said second communication protocols.
摘要:
Video coding methods and apparatuses are provided that make use of various models and/or modes to significantly improve coding efficiency especially for high/complex motion sequences. The methods and apparatuses take advantage of the temporal and/or spatial correlations that may exist within portions of the frames, e.g., at the Macroblocks level, etc. The methods and apparatuses tend to significantly reduce the amount of data required for encoding motion information while retaining or even improving video image quality.
摘要:
A baseband process operating on a receiver in a communication system, such as an 802.15.4 communication system, is provided. The baseband process has a set of predefined reference signals, with each reference signal associated with a possible characteristic in the baseband signal. The baseband process receives a degraded baseband signal, and preprocesses the baseband signal to reduce or remove the effects of the degradation. The preprocessed baseband signal is correlated with reference signals from the set of predefined reference signals, and the reference signal with the best correlation is identified. By identifying the best correlating reference signal, the baseband process is able to identify a characteristic of the baseband signal. In one example of the baseband process, the baseband signal is preprocessed by auto-correlating the degraded baseband signal with a delayed version of the degraded baseband signal. The preprocessed baseband signal is then correlated against a set of sync reference signals to find a sync offset for the baseband signal. When synchronized with the baseband signal, the baseband process may be correlated against a set of symbol reference signals to decode sequential symbols in the baseband signal.