Abstract:
The present invention defines a DNA: protein-binding assay useful for screening libraries of synthetic or biological compounds for their ability to bind DNA test sequences. The assay is versatile in that any number of test sequences can be tested by placing the test sequence adjacent to a defined protein binding screening sequence. Binding of molecules to these test sequence changes the binding characteristics of the protein molecule to its cognate binding sequence. When such a molecule binds the test sequence the equilibrium of the DNA:protein complexes is disturbed, generating changes in the concentration of free DNA probe. Numerous exemplary target test sequences (SEQ ID NO:1 to SEQ ID NO:600) are set forth. The assay of the present invention is also useful to characterize the preferred binding sequences of any selected DNA-binding molecule.
Abstract translation:本发明定义了一种DNA:蛋白结合测定法,用于筛选合成或生物化合物文库结合DNA测试序列的能力。 该测定法是通用的,因为可以通过将测试序列置于与定义的蛋白质结合筛选序列相邻的位置来测试任何数量的测试序列。 分子与这些测试序列的结合改变了蛋白质分子与其同源结合序列的结合特征。 当这样的分子结合测试序列时,DNA:蛋白复合物的平衡受到干扰,产生游离DNA探针浓度的变化。 阐述了许多示例性目标测试序列(SEQ ID NO:1至SEQ ID NO:600)。 本发明的测定也可用于表征任何所选DNA结合分子的优选结合序列。
Abstract:
The present invention relates to methods for contacting biological targets using a mutated streptavidin protein having a reduced affinity for biotin.
Abstract:
The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.
Abstract:
The present invention defines a DNA:protein-binding assay useful for screening libraries of synthetic or biological compounds for their ability to bind DNA test sequences. The assay is versatile in that any number of test sequences can be tested by placing the test sequence adjacent to a defined protein binding screening sequence. Binding of molecules to these test sequence changes the binding characteristics of the protein molecule to its cognate binding sequence. When such a molecule binds the test sequence the equilibrium of the DNA:protein complexes is disturbed, generating changes in the concentration of free DNA probe. Numerous exemplary target test sequences (SEQ ID NO:1 to SEQ ID NO:600) are set forth. The assay of the present invention is also useful to characterize the preferred binding sequences of any selected DNA-binding molecule.
Abstract translation:本发明定义了一种DNA:蛋白结合测定法,用于筛选合成或生物化合物文库结合DNA测试序列的能力。 该测定法是通用的,因为可以通过将测试序列置于与定义的蛋白质结合筛选序列相邻的位置来测试任何数量的测试序列。 分子与这些测试序列的结合改变了蛋白质分子与其同源结合序列的结合特征。 当这样的分子结合测试序列时,DNA:蛋白复合物的平衡受到干扰,产生游离DNA探针浓度的变化。 阐述了许多示例性目标测试序列(SEQ ID NO:1至SEQ ID NO:600)。 本发明的测定也可用于表征任何所选DNA结合分子的优选结合序列。
Abstract:
The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.
Abstract:
The present invention defines an assay useful for screening libraries of synthetic or biological compounds for their ability to bind specific DNA test sequences. The assay is also useful for determining the sequence specificity and relative DNA-binding affinity of DNA-binding molecules for any particular DNA sequence. Also described herein are potential applications of the assay, including: 1) the detection of lead compounds or new drugs via the mass screening of libraries of synthetic or biological compounds (i.e., fermentation broths); 2) the design of sequence-specific DNA-binding drugs comprised of homo- or hetero-meric subunits of molecules for which the sequence specificity was determined using the assay; and 3) the use of molecules for which sequence specificity was determined using the assay as covalently attached moieties to aid in the binding of nucleic acid or other macromolecular polymers to nucleic acid sequences.
Abstract:
The present invention relates to genetic containment systems which express a biotin-binding component that can be used for selectively destroying recombinant cells such as genetically engineered microorganisms. These systems may comprise a streptavidin or an avidin gene whose expression is controlled by a regulatable promoter. The regulatory agent such as a transcriptional effector is expressed from another gene which may also be expressed and its expression controlled by the containment system. Expression of the agent can be designed to respond to physiological changes in the environment. The invention also relates to containment systems and methods for the selective detection or tracking of recombinant cells and to eukaryotic and prokaryotic cells which contain these genetic containment systems.
Abstract:
The present invention defines a DNA:protein-binding assay useful for screening libraries of synthetic or biological compounds for their ability to bind DNA test sequences. The assay is versatile in that any number of test sequences can be tested by placing the test sequence adjacent to a defined protein binding screening sequence. Binding of molecules to these test sequence changes the binding characteristics of the protein molecule to its cognate binding sequence. When such a molecule binds the test sequence the equilibrium of the DNA:protein complexes is disturbed, generating changes in the concentration of free DNA probe. Numerous exemplary target test sequences (SEQ ID NO:1 to SEQ ID NO:600) are set forth. The assay of the present invention is also useful to characterize the preferred binding sequences of any selected DNA-binding molecule.
Abstract translation:本发明定义了一种DNA:蛋白结合测定法,用于筛选合成或生物化合物文库结合DNA测试序列的能力。 该测定法是通用的,因为可以通过将测试序列置于与定义的蛋白质结合筛选序列相邻的位置来测试任何数量的测试序列。 分子与这些测试序列的结合改变了蛋白质分子与其同源结合序列的结合特征。 当这样的分子结合测试序列时,DNA:蛋白复合物的平衡受到干扰,产生游离DNA探针浓度的变化。 阐述了许多示例性目标测试序列(SEQ ID NO:1至SEQ ID NO:600)。 本发明的测定也可用于表征任何所选DNA结合分子的优选结合序列。
Abstract:
A novel recombinant streptavidin-protein A chimeric protein which allows conjugation of antibody molecules with biological materials. The chimeric protein is efficiently expressed in Escherichia coli and is purified by simple procedures. The purified chimetic protein can bind one biotin molecule and one to two immunoglobulin molecules per subunit.
Abstract:
The present invention provides a compound having the formula ##STR1## wherein Y is biotin or iminobiotin, X is CH.sub.2, P is psoralen or a psoralen derivative, r is an integer equal to or greater than 2 and s is an integer equal to or greater than 1.The invention also provides a method for preparing a biotinylated psoralen or a biotinylated psoralen derivative.Further provided are methods for detecting, purifying, and isolating nucleic acids, and methods for delivering an iminobiotinylated psoralen to a cell.